Lift Build-Up on Circulation Control Airfoils

Circulation control airfoils modify the lift by changing the jet momentum (injected tangent to a blunt trailing edge), whereas conventional sharp trailing-edge airfoils control their lift primarily by changing the angle of attack. For a step input in the angle of attack, the lift develops with a cer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2016-01, Vol.53 (1), p.231-242
Hauptverfasser: Friedman, Chen, Arieli, Rimon, Levy, Yuval
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 1
container_start_page 231
container_title Journal of aircraft
container_volume 53
creator Friedman, Chen
Arieli, Rimon
Levy, Yuval
description Circulation control airfoils modify the lift by changing the jet momentum (injected tangent to a blunt trailing edge), whereas conventional sharp trailing-edge airfoils control their lift primarily by changing the angle of attack. For a step input in the angle of attack, the lift develops with a certain indicial time lag, which for sharp trailing-edge airfoils may be represented by Wagner’s function. This paper explores the similarities between Wagner’s lift build-up function and lift build-up over elliptical circulation control airfoils using numerical simulations for a 15% thickness-to-chord ratio elliptic circulation control airfoil. Following a thorough validation, the lift response to a step change in jet momentum is simulated using time-accurate flow simulations. The results highlight an excellent correlation between the time lags of the Wagner function and the circulation control airfoil lift response to the corresponding step input, suggesting that the Wagner function may lend itself for representing circulation control lift dynamics. Additional transient behaviors are also compared, and similarities as well as ranges of applicability are discussed.
doi_str_mv 10.2514/1.C033304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800469742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800469742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-f78ddd828e45960aafa97c5c64f5b239f76e0e6f934cb1b97fe4f36b764a77803</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW9QEEQPnW-aNG9ynMV_MPDiziFtE8jompm0B7-9HdtBFDy97-HHw8NDyDWFRVFS_kAXFTDGgJ-QGS0Zy5kU8pTMAAqaSyHUOblIaQMAEhBnJF95N2SPo-_afL3LQp9VPjZjZwa__0M_xNBlSx9d8F26JGfOdMleHe-crJ-fPqrXfPX-8lYtV7lhXA25Q9m2rSyk5aUSYIwzCpuyEdyVdcGUQ2HBCqcYb2paK3SWOyZqFNwgSmBzcnfI3cXwOdo06K1Pje0609swJk0lABcKeTHRm190E8bYT-10wRWjSqKk_ymKSFFiKeWk7g-qiSGlaJ3eRb818UtT0Pt5NdXHeSd7e7DGG_Mj7Q_8BugndJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771787588</pqid></control><display><type>article</type><title>Lift Build-Up on Circulation Control Airfoils</title><source>Alma/SFX Local Collection</source><creator>Friedman, Chen ; Arieli, Rimon ; Levy, Yuval</creator><creatorcontrib>Friedman, Chen ; Arieli, Rimon ; Levy, Yuval</creatorcontrib><description>Circulation control airfoils modify the lift by changing the jet momentum (injected tangent to a blunt trailing edge), whereas conventional sharp trailing-edge airfoils control their lift primarily by changing the angle of attack. For a step input in the angle of attack, the lift develops with a certain indicial time lag, which for sharp trailing-edge airfoils may be represented by Wagner’s function. This paper explores the similarities between Wagner’s lift build-up function and lift build-up over elliptical circulation control airfoils using numerical simulations for a 15% thickness-to-chord ratio elliptic circulation control airfoil. Following a thorough validation, the lift response to a step change in jet momentum is simulated using time-accurate flow simulations. The results highlight an excellent correlation between the time lags of the Wagner function and the circulation control airfoil lift response to the corresponding step input, suggesting that the Wagner function may lend itself for representing circulation control lift dynamics. Additional transient behaviors are also compared, and similarities as well as ranges of applicability are discussed.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C033304</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Accumulation ; Aerodynamics ; Aerospace engineering ; Aircraft ; Airfoils ; Angle of attack ; Circulation control airfoils ; Computer simulation ; Construction ; Flow simulation ; Lift ; Mathematical models ; Momentum ; Reynolds number ; Similarity ; Simulation ; Time lag ; Trailing edges ; Turbulence models ; Wagner function</subject><ispartof>Journal of aircraft, 2016-01, Vol.53 (1), p.231-242</ispartof><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3868/15 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-f78ddd828e45960aafa97c5c64f5b239f76e0e6f934cb1b97fe4f36b764a77803</citedby><cites>FETCH-LOGICAL-a349t-f78ddd828e45960aafa97c5c64f5b239f76e0e6f934cb1b97fe4f36b764a77803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Friedman, Chen</creatorcontrib><creatorcontrib>Arieli, Rimon</creatorcontrib><creatorcontrib>Levy, Yuval</creatorcontrib><title>Lift Build-Up on Circulation Control Airfoils</title><title>Journal of aircraft</title><description>Circulation control airfoils modify the lift by changing the jet momentum (injected tangent to a blunt trailing edge), whereas conventional sharp trailing-edge airfoils control their lift primarily by changing the angle of attack. For a step input in the angle of attack, the lift develops with a certain indicial time lag, which for sharp trailing-edge airfoils may be represented by Wagner’s function. This paper explores the similarities between Wagner’s lift build-up function and lift build-up over elliptical circulation control airfoils using numerical simulations for a 15% thickness-to-chord ratio elliptic circulation control airfoil. Following a thorough validation, the lift response to a step change in jet momentum is simulated using time-accurate flow simulations. The results highlight an excellent correlation between the time lags of the Wagner function and the circulation control airfoil lift response to the corresponding step input, suggesting that the Wagner function may lend itself for representing circulation control lift dynamics. Additional transient behaviors are also compared, and similarities as well as ranges of applicability are discussed.</description><subject>Accumulation</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Airfoils</subject><subject>Angle of attack</subject><subject>Circulation control airfoils</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Flow simulation</subject><subject>Lift</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Reynolds number</subject><subject>Similarity</subject><subject>Simulation</subject><subject>Time lag</subject><subject>Trailing edges</subject><subject>Turbulence models</subject><subject>Wagner function</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW9QEEQPnW-aNG9ynMV_MPDiziFtE8jompm0B7-9HdtBFDy97-HHw8NDyDWFRVFS_kAXFTDGgJ-QGS0Zy5kU8pTMAAqaSyHUOblIaQMAEhBnJF95N2SPo-_afL3LQp9VPjZjZwa__0M_xNBlSx9d8F26JGfOdMleHe-crJ-fPqrXfPX-8lYtV7lhXA25Q9m2rSyk5aUSYIwzCpuyEdyVdcGUQ2HBCqcYb2paK3SWOyZqFNwgSmBzcnfI3cXwOdo06K1Pje0609swJk0lABcKeTHRm190E8bYT-10wRWjSqKk_ymKSFFiKeWk7g-qiSGlaJ3eRb818UtT0Pt5NdXHeSd7e7DGG_Mj7Q_8BugndJw</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Friedman, Chen</creator><creator>Arieli, Rimon</creator><creator>Levy, Yuval</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>201601</creationdate><title>Lift Build-Up on Circulation Control Airfoils</title><author>Friedman, Chen ; Arieli, Rimon ; Levy, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-f78ddd828e45960aafa97c5c64f5b239f76e0e6f934cb1b97fe4f36b764a77803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accumulation</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Airfoils</topic><topic>Angle of attack</topic><topic>Circulation control airfoils</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Flow simulation</topic><topic>Lift</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Reynolds number</topic><topic>Similarity</topic><topic>Simulation</topic><topic>Time lag</topic><topic>Trailing edges</topic><topic>Turbulence models</topic><topic>Wagner function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedman, Chen</creatorcontrib><creatorcontrib>Arieli, Rimon</creatorcontrib><creatorcontrib>Levy, Yuval</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedman, Chen</au><au>Arieli, Rimon</au><au>Levy, Yuval</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lift Build-Up on Circulation Control Airfoils</atitle><jtitle>Journal of aircraft</jtitle><date>2016-01</date><risdate>2016</risdate><volume>53</volume><issue>1</issue><spage>231</spage><epage>242</epage><pages>231-242</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><abstract>Circulation control airfoils modify the lift by changing the jet momentum (injected tangent to a blunt trailing edge), whereas conventional sharp trailing-edge airfoils control their lift primarily by changing the angle of attack. For a step input in the angle of attack, the lift develops with a certain indicial time lag, which for sharp trailing-edge airfoils may be represented by Wagner’s function. This paper explores the similarities between Wagner’s lift build-up function and lift build-up over elliptical circulation control airfoils using numerical simulations for a 15% thickness-to-chord ratio elliptic circulation control airfoil. Following a thorough validation, the lift response to a step change in jet momentum is simulated using time-accurate flow simulations. The results highlight an excellent correlation between the time lags of the Wagner function and the circulation control airfoil lift response to the corresponding step input, suggesting that the Wagner function may lend itself for representing circulation control lift dynamics. Additional transient behaviors are also compared, and similarities as well as ranges of applicability are discussed.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C033304</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2016-01, Vol.53 (1), p.231-242
issn 0021-8669
1533-3868
language eng
recordid cdi_proquest_miscellaneous_1800469742
source Alma/SFX Local Collection
subjects Accumulation
Aerodynamics
Aerospace engineering
Aircraft
Airfoils
Angle of attack
Circulation control airfoils
Computer simulation
Construction
Flow simulation
Lift
Mathematical models
Momentum
Reynolds number
Similarity
Simulation
Time lag
Trailing edges
Turbulence models
Wagner function
title Lift Build-Up on Circulation Control Airfoils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lift%20Build-Up%20on%20Circulation%20Control%20Airfoils&rft.jtitle=Journal%20of%20aircraft&rft.au=Friedman,%20Chen&rft.date=2016-01&rft.volume=53&rft.issue=1&rft.spage=231&rft.epage=242&rft.pages=231-242&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/1.C033304&rft_dat=%3Cproquest_cross%3E1800469742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771787588&rft_id=info:pmid/&rfr_iscdi=true