Finite Element Modeling of Deformation Behavior of Steel Specimens under Various Loading Scenarios

Lightweighting materials (e.g., advanced high strength steels, aluminum alloys etc.) are increasingly being used by automotive companies as sheet metal components. However, accurate material models are needed for wider adoption. These constitutive material data are often developed by applying biaxia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key Engineering Materials 2015-07, Vol.651-653, p.969-974
Hauptverfasser: Iadicola, Mark, Banerjee, Dilip, Creuziger, Adam, Foecke, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 974
container_issue
container_start_page 969
container_title Key Engineering Materials
container_volume 651-653
creator Iadicola, Mark
Banerjee, Dilip
Creuziger, Adam
Foecke, Tim
description Lightweighting materials (e.g., advanced high strength steels, aluminum alloys etc.) are increasingly being used by automotive companies as sheet metal components. However, accurate material models are needed for wider adoption. These constitutive material data are often developed by applying biaxial strain paths with cross-shaped (cruciform) specimens. Optimizing the design of specimens is a major goal in which finite element (FE) analysis can play a major role. However, verification of FE models is necessary. Calibrating models against uniaxial tensile tests is a logical first step. In the present study, reliable stress-strain data up to failure are developed by using digital image correlation (DIC) technique for strain measurement and X-ray techniques and/or force data for stress measurement. Such data are used to model the deformation behavior in uniaxial and biaxial tensile specimens. Model predictions of strains and displacements are compared with experimental data. The role of imperfections on necking behavior in FE modeling results of uniaxial tests is discussed. Computed results of deformation, strain profile, and von Mises plastic strain agree with measured values along critical paths in the cruciform specimens. Such a calibrated FE model can be used to obtain an optimum cruciform specimen design.
doi_str_mv 10.4028/www.scientific.net/KEM.651-653.969
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800468200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4068758101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3169-59856b985b805f96aa1d03172dfde2dcc3d579e7661ec3e7a707b0c7897f65db3</originalsourceid><addsrcrecordid>eNqNkUtvGyEURlGbSk3c_gekbqJKM4HBvJZN4jxUR1247RYxcKchGoMD41j598FypVRdZQFIl8u5HzoIfaWknZNOne12u7a4AHEKQ3BthOns--KuFZw2grNWC_0OHVMhukZLzd-jE0aYYnwuqTiqF4SyRqtOfEQnpTwQwqii_Bj1VyGGCfBihHVF47vkYQzxD04DvoQh5bWdQor4HO7tU0h5X19NACNebcCF-qbgbfSQ8W-bQ9oWvEzW7wErB3FfKp_Qh8GOBT7_PWfo19Xi58VNs_xxfXvxbdk4RoVuuFZc9HXrFeGDFtZSX1PKzg8eOu8c81xqkEJQcAyklUT2xEml5SC479kMnR64m5wet1Amsw7FwTjaCDWYoYqQuVBd_fsMffmv9SFtc6zpDJWazkVHlahd54cul1MpGQazyWFt87OhxOydmOrEvDox1YmpTkx1Uhcz1UmFXB4gU7axTODu_5n1dswL_K2dQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791462186</pqid></control><display><type>article</type><title>Finite Element Modeling of Deformation Behavior of Steel Specimens under Various Loading Scenarios</title><source>Scientific.net Journals</source><creator>Iadicola, Mark ; Banerjee, Dilip ; Creuziger, Adam ; Foecke, Tim</creator><creatorcontrib>Iadicola, Mark ; Banerjee, Dilip ; Creuziger, Adam ; Foecke, Tim</creatorcontrib><description>Lightweighting materials (e.g., advanced high strength steels, aluminum alloys etc.) are increasingly being used by automotive companies as sheet metal components. However, accurate material models are needed for wider adoption. These constitutive material data are often developed by applying biaxial strain paths with cross-shaped (cruciform) specimens. Optimizing the design of specimens is a major goal in which finite element (FE) analysis can play a major role. However, verification of FE models is necessary. Calibrating models against uniaxial tensile tests is a logical first step. In the present study, reliable stress-strain data up to failure are developed by using digital image correlation (DIC) technique for strain measurement and X-ray techniques and/or force data for stress measurement. Such data are used to model the deformation behavior in uniaxial and biaxial tensile specimens. Model predictions of strains and displacements are compared with experimental data. The role of imperfections on necking behavior in FE modeling results of uniaxial tests is discussed. Computed results of deformation, strain profile, and von Mises plastic strain agree with measured values along critical paths in the cruciform specimens. Such a calibrated FE model can be used to obtain an optimum cruciform specimen design.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 3038354716</identifier><identifier>ISBN: 9783038354710</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.651-653.969</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Calibration ; Deformation ; Design engineering ; Finite element method ; Mathematical analysis ; Modelling ; Optimization ; Strain</subject><ispartof>Key Engineering Materials, 2015-07, Vol.651-653, p.969-974</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3169-59856b985b805f96aa1d03172dfde2dcc3d579e7661ec3e7a707b0c7897f65db3</citedby><cites>FETCH-LOGICAL-c3169-59856b985b805f96aa1d03172dfde2dcc3d579e7661ec3e7a707b0c7897f65db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3974?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Iadicola, Mark</creatorcontrib><creatorcontrib>Banerjee, Dilip</creatorcontrib><creatorcontrib>Creuziger, Adam</creatorcontrib><creatorcontrib>Foecke, Tim</creatorcontrib><title>Finite Element Modeling of Deformation Behavior of Steel Specimens under Various Loading Scenarios</title><title>Key Engineering Materials</title><description>Lightweighting materials (e.g., advanced high strength steels, aluminum alloys etc.) are increasingly being used by automotive companies as sheet metal components. However, accurate material models are needed for wider adoption. These constitutive material data are often developed by applying biaxial strain paths with cross-shaped (cruciform) specimens. Optimizing the design of specimens is a major goal in which finite element (FE) analysis can play a major role. However, verification of FE models is necessary. Calibrating models against uniaxial tensile tests is a logical first step. In the present study, reliable stress-strain data up to failure are developed by using digital image correlation (DIC) technique for strain measurement and X-ray techniques and/or force data for stress measurement. Such data are used to model the deformation behavior in uniaxial and biaxial tensile specimens. Model predictions of strains and displacements are compared with experimental data. The role of imperfections on necking behavior in FE modeling results of uniaxial tests is discussed. Computed results of deformation, strain profile, and von Mises plastic strain agree with measured values along critical paths in the cruciform specimens. Such a calibrated FE model can be used to obtain an optimum cruciform specimen design.</description><subject>Calibration</subject><subject>Deformation</subject><subject>Design engineering</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Strain</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>3038354716</isbn><isbn>9783038354710</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkUtvGyEURlGbSk3c_gekbqJKM4HBvJZN4jxUR1247RYxcKchGoMD41j598FypVRdZQFIl8u5HzoIfaWknZNOne12u7a4AHEKQ3BthOns--KuFZw2grNWC_0OHVMhukZLzd-jE0aYYnwuqTiqF4SyRqtOfEQnpTwQwqii_Bj1VyGGCfBihHVF47vkYQzxD04DvoQh5bWdQor4HO7tU0h5X19NACNebcCF-qbgbfSQ8W-bQ9oWvEzW7wErB3FfKp_Qh8GOBT7_PWfo19Xi58VNs_xxfXvxbdk4RoVuuFZc9HXrFeGDFtZSX1PKzg8eOu8c81xqkEJQcAyklUT2xEml5SC479kMnR64m5wet1Amsw7FwTjaCDWYoYqQuVBd_fsMffmv9SFtc6zpDJWazkVHlahd54cul1MpGQazyWFt87OhxOydmOrEvDox1YmpTkx1Uhcz1UmFXB4gU7axTODu_5n1dswL_K2dQA</recordid><startdate>20150710</startdate><enddate>20150710</enddate><creator>Iadicola, Mark</creator><creator>Banerjee, Dilip</creator><creator>Creuziger, Adam</creator><creator>Foecke, Tim</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150710</creationdate><title>Finite Element Modeling of Deformation Behavior of Steel Specimens under Various Loading Scenarios</title><author>Iadicola, Mark ; Banerjee, Dilip ; Creuziger, Adam ; Foecke, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3169-59856b985b805f96aa1d03172dfde2dcc3d579e7661ec3e7a707b0c7897f65db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Calibration</topic><topic>Deformation</topic><topic>Design engineering</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iadicola, Mark</creatorcontrib><creatorcontrib>Banerjee, Dilip</creatorcontrib><creatorcontrib>Creuziger, Adam</creatorcontrib><creatorcontrib>Foecke, Tim</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iadicola, Mark</au><au>Banerjee, Dilip</au><au>Creuziger, Adam</au><au>Foecke, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Modeling of Deformation Behavior of Steel Specimens under Various Loading Scenarios</atitle><jtitle>Key Engineering Materials</jtitle><date>2015-07-10</date><risdate>2015</risdate><volume>651-653</volume><spage>969</spage><epage>974</epage><pages>969-974</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>3038354716</isbn><isbn>9783038354710</isbn><abstract>Lightweighting materials (e.g., advanced high strength steels, aluminum alloys etc.) are increasingly being used by automotive companies as sheet metal components. However, accurate material models are needed for wider adoption. These constitutive material data are often developed by applying biaxial strain paths with cross-shaped (cruciform) specimens. Optimizing the design of specimens is a major goal in which finite element (FE) analysis can play a major role. However, verification of FE models is necessary. Calibrating models against uniaxial tensile tests is a logical first step. In the present study, reliable stress-strain data up to failure are developed by using digital image correlation (DIC) technique for strain measurement and X-ray techniques and/or force data for stress measurement. Such data are used to model the deformation behavior in uniaxial and biaxial tensile specimens. Model predictions of strains and displacements are compared with experimental data. The role of imperfections on necking behavior in FE modeling results of uniaxial tests is discussed. Computed results of deformation, strain profile, and von Mises plastic strain agree with measured values along critical paths in the cruciform specimens. Such a calibrated FE model can be used to obtain an optimum cruciform specimen design.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.651-653.969</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key Engineering Materials, 2015-07, Vol.651-653, p.969-974
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1800468200
source Scientific.net Journals
subjects Calibration
Deformation
Design engineering
Finite element method
Mathematical analysis
Modelling
Optimization
Strain
title Finite Element Modeling of Deformation Behavior of Steel Specimens under Various Loading Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Modeling%20of%20Deformation%20Behavior%20of%20Steel%20Specimens%20under%20Various%20Loading%20Scenarios&rft.jtitle=Key%20Engineering%20Materials&rft.au=Iadicola,%20Mark&rft.date=2015-07-10&rft.volume=651-653&rft.spage=969&rft.epage=974&rft.pages=969-974&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=3038354716&rft.isbn_list=9783038354710&rft_id=info:doi/10.4028/www.scientific.net/KEM.651-653.969&rft_dat=%3Cproquest_cross%3E4068758101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791462186&rft_id=info:pmid/&rfr_iscdi=true