Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations
Several structural models for the active site of the peroxo intermediate state “P” of the hydroxylase component of soluble methane monooxygenase (MMOH) have been studied, using two DFT functionals OPBE and PW91 with broken-symmetry methodology and the conductor-like screening (COSMO) solvation model...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2008-04, Vol.47 (8), p.2975-2986 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2986 |
---|---|
container_issue | 8 |
container_start_page | 2975 |
container_title | Inorganic chemistry |
container_volume | 47 |
creator | Han, Wen-Ge Noodleman, Louis |
description | Several structural models for the active site of the peroxo intermediate state “P” of the hydroxylase component of soluble methane monooxygenase (MMOH) have been studied, using two DFT functionals OPBE and PW91 with broken-symmetry methodology and the conductor-like screening (COSMO) solvation model. These active site models have different O2 binding modes to the diiron center, such as the μ-η2,η2, trans-μ−1,2 and cis-μ−1,2 conformations. The calculated properties, including optimized geometries, electronic energies, Fe net spin populations, and Mössbauer isomer shift and quadrupole splitting values, have been reported and compared with available experimental results. The high-spin antiferromagnetically (AF) coupled Fe3+ sites are correctly predicted by both OPBE and PW91 methods for all active site models. Our data analysis and comparisons favor a cis-μ−1,2 structure (model cis-μ−1,2a shown in Figure ) likely to represent the active site of MMOH-P. Feasible structural changes from MMOH-P to another intermediate state MMOH-Q are also proposed, where the carboxylate group of Glu243 side chain has to open up from the mono-oxygen bridging position, and the dissociations of the terminal H2O ligand from Fe1 and of the oxygen atom in the carboxylate group of Glu144 from Fe2 are also necessary for the O2 binding mode changes from cis to trans. The O−O bond is proposed to break in the trans-conformation and forms two μ-oxo bridges in MMOH-Q. The terminal H2O molecule and the Glu144 side chain then rebind with Fe1 and Fe2, respectively, in Q. |
doi_str_mv | 10.1021/ic701194b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800461594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800461594</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-a064f97d25409c798128f6ec27c960e5429e4ffcbe5b5c04cb84d5f9f289943a3</originalsourceid><addsrcrecordid>eNptkU9u1DAYxS0EosPAggsgb5BgEbATO4mXMNA_UiumzFQgNpbjfO6kTexiO2JyAQ7ANbgVJ8HtjMqGlf-8n95nv4fQc0reUJLTt52uCKWCNQ_QjPKcZJySrw_RjJC0p2UpDtCTEK4IIaJg5WN0QOuiLCkvZuj3KvpRx9GrHp-5Fnq8imPbQcDGeRw3gJfg3dbhExvBD9B2KqY7rGx7p34GpWPnLF6quPmhJmy8G5L-5-cvfI6dwWcQN8pCMrfObadLsCoAvgidvcTvvbsGm62mYYDoJ_wBbOjihA9He2ea3rRQvR57dXsKT9Ejo_oAz_brHF0cflwvjrPTT0cni3enmWKcxEyRkhlRtTlnROhK1DSvTQk6r7QoCXCWC2DG6AZ4wzVhuqlZy40weS0EK1QxR692vjfefR8hRDl0QUPfp3-4MUhaE8JSfAmeo9c7VHsXggcjb3w3KD9JSuRtN_K-m8S-2NuOTQryH7kvIwHZDuhChO29rvy1LKui4nK9XMkv347O6-PlWtLEv9zxSgd55UafAgv_GfwXbQ2oNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800461594</pqid></control><display><type>article</type><title>Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Han, Wen-Ge ; Noodleman, Louis</creator><creatorcontrib>Han, Wen-Ge ; Noodleman, Louis</creatorcontrib><description>Several structural models for the active site of the peroxo intermediate state “P” of the hydroxylase component of soluble methane monooxygenase (MMOH) have been studied, using two DFT functionals OPBE and PW91 with broken-symmetry methodology and the conductor-like screening (COSMO) solvation model. These active site models have different O2 binding modes to the diiron center, such as the μ-η2,η2, trans-μ−1,2 and cis-μ−1,2 conformations. The calculated properties, including optimized geometries, electronic energies, Fe net spin populations, and Mössbauer isomer shift and quadrupole splitting values, have been reported and compared with available experimental results. The high-spin antiferromagnetically (AF) coupled Fe3+ sites are correctly predicted by both OPBE and PW91 methods for all active site models. Our data analysis and comparisons favor a cis-μ−1,2 structure (model cis-μ−1,2a shown in Figure ) likely to represent the active site of MMOH-P. Feasible structural changes from MMOH-P to another intermediate state MMOH-Q are also proposed, where the carboxylate group of Glu243 side chain has to open up from the mono-oxygen bridging position, and the dissociations of the terminal H2O ligand from Fe1 and of the oxygen atom in the carboxylate group of Glu144 from Fe2 are also necessary for the O2 binding mode changes from cis to trans. The O−O bond is proposed to break in the trans-conformation and forms two μ-oxo bridges in MMOH-Q. The terminal H2O molecule and the Glu144 side chain then rebind with Fe1 and Fe2, respectively, in Q.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic701194b</identifier><identifier>PMID: 18366153</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alkanes - chemistry ; Alkanes - metabolism ; Binding ; Binding Sites ; Carboxylates ; Chains ; Density ; Electronics ; Kinetics ; Mathematical models ; Methane ; Methane - chemistry ; Methane - metabolism ; Models, Molecular ; Oxygenases - chemistry ; Oxygenases - metabolism ; Peroxides ; Protein Conformation ; Terminals</subject><ispartof>Inorganic chemistry, 2008-04, Vol.47 (8), p.2975-2986</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-a064f97d25409c798128f6ec27c960e5429e4ffcbe5b5c04cb84d5f9f289943a3</citedby><cites>FETCH-LOGICAL-a450t-a064f97d25409c798128f6ec27c960e5429e4ffcbe5b5c04cb84d5f9f289943a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic701194b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic701194b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18366153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Wen-Ge</creatorcontrib><creatorcontrib>Noodleman, Louis</creatorcontrib><title>Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Several structural models for the active site of the peroxo intermediate state “P” of the hydroxylase component of soluble methane monooxygenase (MMOH) have been studied, using two DFT functionals OPBE and PW91 with broken-symmetry methodology and the conductor-like screening (COSMO) solvation model. These active site models have different O2 binding modes to the diiron center, such as the μ-η2,η2, trans-μ−1,2 and cis-μ−1,2 conformations. The calculated properties, including optimized geometries, electronic energies, Fe net spin populations, and Mössbauer isomer shift and quadrupole splitting values, have been reported and compared with available experimental results. The high-spin antiferromagnetically (AF) coupled Fe3+ sites are correctly predicted by both OPBE and PW91 methods for all active site models. Our data analysis and comparisons favor a cis-μ−1,2 structure (model cis-μ−1,2a shown in Figure ) likely to represent the active site of MMOH-P. Feasible structural changes from MMOH-P to another intermediate state MMOH-Q are also proposed, where the carboxylate group of Glu243 side chain has to open up from the mono-oxygen bridging position, and the dissociations of the terminal H2O ligand from Fe1 and of the oxygen atom in the carboxylate group of Glu144 from Fe2 are also necessary for the O2 binding mode changes from cis to trans. The O−O bond is proposed to break in the trans-conformation and forms two μ-oxo bridges in MMOH-Q. The terminal H2O molecule and the Glu144 side chain then rebind with Fe1 and Fe2, respectively, in Q.</description><subject>Alkanes - chemistry</subject><subject>Alkanes - metabolism</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Carboxylates</subject><subject>Chains</subject><subject>Density</subject><subject>Electronics</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane - chemistry</subject><subject>Methane - metabolism</subject><subject>Models, Molecular</subject><subject>Oxygenases - chemistry</subject><subject>Oxygenases - metabolism</subject><subject>Peroxides</subject><subject>Protein Conformation</subject><subject>Terminals</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU9u1DAYxS0EosPAggsgb5BgEbATO4mXMNA_UiumzFQgNpbjfO6kTexiO2JyAQ7ANbgVJ8HtjMqGlf-8n95nv4fQc0reUJLTt52uCKWCNQ_QjPKcZJySrw_RjJC0p2UpDtCTEK4IIaJg5WN0QOuiLCkvZuj3KvpRx9GrHp-5Fnq8imPbQcDGeRw3gJfg3dbhExvBD9B2KqY7rGx7p34GpWPnLF6quPmhJmy8G5L-5-cvfI6dwWcQN8pCMrfObadLsCoAvgidvcTvvbsGm62mYYDoJ_wBbOjihA9He2ea3rRQvR57dXsKT9Ejo_oAz_brHF0cflwvjrPTT0cni3enmWKcxEyRkhlRtTlnROhK1DSvTQk6r7QoCXCWC2DG6AZ4wzVhuqlZy40weS0EK1QxR692vjfefR8hRDl0QUPfp3-4MUhaE8JSfAmeo9c7VHsXggcjb3w3KD9JSuRtN_K-m8S-2NuOTQryH7kvIwHZDuhChO29rvy1LKui4nK9XMkv347O6-PlWtLEv9zxSgd55UafAgv_GfwXbQ2oNg</recordid><startdate>20080421</startdate><enddate>20080421</enddate><creator>Han, Wen-Ge</creator><creator>Noodleman, Louis</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20080421</creationdate><title>Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations</title><author>Han, Wen-Ge ; Noodleman, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-a064f97d25409c798128f6ec27c960e5429e4ffcbe5b5c04cb84d5f9f289943a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alkanes - chemistry</topic><topic>Alkanes - metabolism</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Carboxylates</topic><topic>Chains</topic><topic>Density</topic><topic>Electronics</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane - chemistry</topic><topic>Methane - metabolism</topic><topic>Models, Molecular</topic><topic>Oxygenases - chemistry</topic><topic>Oxygenases - metabolism</topic><topic>Peroxides</topic><topic>Protein Conformation</topic><topic>Terminals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Wen-Ge</creatorcontrib><creatorcontrib>Noodleman, Louis</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Wen-Ge</au><au>Noodleman, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2008-04-21</date><risdate>2008</risdate><volume>47</volume><issue>8</issue><spage>2975</spage><epage>2986</epage><pages>2975-2986</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Several structural models for the active site of the peroxo intermediate state “P” of the hydroxylase component of soluble methane monooxygenase (MMOH) have been studied, using two DFT functionals OPBE and PW91 with broken-symmetry methodology and the conductor-like screening (COSMO) solvation model. These active site models have different O2 binding modes to the diiron center, such as the μ-η2,η2, trans-μ−1,2 and cis-μ−1,2 conformations. The calculated properties, including optimized geometries, electronic energies, Fe net spin populations, and Mössbauer isomer shift and quadrupole splitting values, have been reported and compared with available experimental results. The high-spin antiferromagnetically (AF) coupled Fe3+ sites are correctly predicted by both OPBE and PW91 methods for all active site models. Our data analysis and comparisons favor a cis-μ−1,2 structure (model cis-μ−1,2a shown in Figure ) likely to represent the active site of MMOH-P. Feasible structural changes from MMOH-P to another intermediate state MMOH-Q are also proposed, where the carboxylate group of Glu243 side chain has to open up from the mono-oxygen bridging position, and the dissociations of the terminal H2O ligand from Fe1 and of the oxygen atom in the carboxylate group of Glu144 from Fe2 are also necessary for the O2 binding mode changes from cis to trans. The O−O bond is proposed to break in the trans-conformation and forms two μ-oxo bridges in MMOH-Q. The terminal H2O molecule and the Glu144 side chain then rebind with Fe1 and Fe2, respectively, in Q.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18366153</pmid><doi>10.1021/ic701194b</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2008-04, Vol.47 (8), p.2975-2986 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_1800461594 |
source | MEDLINE; American Chemical Society Journals |
subjects | Alkanes - chemistry Alkanes - metabolism Binding Binding Sites Carboxylates Chains Density Electronics Kinetics Mathematical models Methane Methane - chemistry Methane - metabolism Models, Molecular Oxygenases - chemistry Oxygenases - metabolism Peroxides Protein Conformation Terminals |
title | Structural Model Studies for the Peroxo Intermediate P and the Reaction Pathway from P → Q of Methane Monooxygenase Using Broken-Symmetry Density Functional Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Model%20Studies%20for%20the%20Peroxo%20Intermediate%20P%20and%20the%20Reaction%20Pathway%20from%20P%20%E2%86%92%20Q%20of%20Methane%20Monooxygenase%20Using%20Broken-Symmetry%20Density%20Functional%20Calculations&rft.jtitle=Inorganic%20chemistry&rft.au=Han,%20Wen-Ge&rft.date=2008-04-21&rft.volume=47&rft.issue=8&rft.spage=2975&rft.epage=2986&rft.pages=2975-2986&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic701194b&rft_dat=%3Cproquest_cross%3E1800461594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800461594&rft_id=info:pmid/18366153&rfr_iscdi=true |