Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning

Biological surfaces display fascinating topographic patterns such as corrugated blood cells and wrinkled dog skin. These patterns have inspired an emerging technology in materials science and engineering to create self-organized surface patterns by harnessing mechanical instabilities. Compared with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2016-02, Vol.41 (2), p.115-122
Hauptverfasser: Wang, Qiming, Zhao, Xuanhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 2
container_start_page 115
container_title MRS bulletin
container_volume 41
creator Wang, Qiming
Zhao, Xuanhe
description Biological surfaces display fascinating topographic patterns such as corrugated blood cells and wrinkled dog skin. These patterns have inspired an emerging technology in materials science and engineering to create self-organized surface patterns by harnessing mechanical instabilities. Compared with patterns generated by conventional lithography, surface instability patterns or so-called ruga patterns are low cost, are easy to fabricate, and can be dynamically controlled by tuning various physical stimuli—offering new opportunities in materials and device engineering across multiple length scales. This article provides a systematic review on the fundamental mechanisms and innovative functions of surface instability patterns by categorizing various modes of instabilities into a quantitatively defined thermodynamic phase diagram, and by highlighting their engineering and biological applications.
doi_str_mv 10.1557/mrs.2015.338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800460397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2015_338</cupid><sourcerecordid>1800460397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-d386978ef38af954be969b844b8d4ad57f243568ff5c43cbd8502a0df8f0f3273</originalsourceid><addsrcrecordid>eNqF0D9PxCAcxnFiNPE83XwBTVwcbIUCLXXTi_-SMzroTGiBC9rCCTTm3r00d4MxJk4sH5788gXgFMECUVpfDj4UJUS0wJjtgRlqMMsRKek-mEHGcF5XDTkERyG8w6RgTWfg5UZtnJXZlzf2o1fhKnsa-2gGJ0WfhdFr0anM2BBFa3oTjQqZdj4bJqRH20XjbJJrEaPy1tjVMTjQog_qZPfOwdvd7eviIV8-3z8urpd5RxGJucSsamqmNGZCN5S0qqmalhHSMkmEpLUuCaYV05p2BHetZBSWAkrNNNS4rPEcnG931959jipEPpjQqb4XVrkxcMQgJBXEzUTPftF3N_p0dlJ1RTCiCJGkLraq8y4ErzRfezMIv-EI8ikvT3n5lJenvInnWx4Ssyvlf4z-7YvdvBhab-RK_fPhGzNTjNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764315114</pqid></control><display><type>article</type><title>Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning</title><source>SpringerLink Journals</source><source>Cambridge University Press Journals Complete</source><creator>Wang, Qiming ; Zhao, Xuanhe</creator><creatorcontrib>Wang, Qiming ; Zhao, Xuanhe</creatorcontrib><description>Biological surfaces display fascinating topographic patterns such as corrugated blood cells and wrinkled dog skin. These patterns have inspired an emerging technology in materials science and engineering to create self-organized surface patterns by harnessing mechanical instabilities. Compared with patterns generated by conventional lithography, surface instability patterns or so-called ruga patterns are low cost, are easy to fabricate, and can be dynamically controlled by tuning various physical stimuli—offering new opportunities in materials and device engineering across multiple length scales. This article provides a systematic review on the fundamental mechanisms and innovative functions of surface instability patterns by categorizing various modes of instabilities into a quantitatively defined thermodynamic phase diagram, and by highlighting their engineering and biological applications.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2015.338</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Biological ; Blood cells ; Characterization and Evaluation of Materials ; Deformation ; Energy Materials ; Instability ; Lithography ; Materials Engineering ; Materials Science ; Nanotechnology ; Patterning via Self-organization and Self-folding ; Phase diagrams ; Skin ; Stability ; Topography ; Tuning</subject><ispartof>MRS bulletin, 2016-02, Vol.41 (2), p.115-122</ispartof><rights>Copyright © Materials Research Society 2016</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-d386978ef38af954be969b844b8d4ad57f243568ff5c43cbd8502a0df8f0f3273</citedby><cites>FETCH-LOGICAL-c514t-d386978ef38af954be969b844b8d4ad57f243568ff5c43cbd8502a0df8f0f3273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2015.338$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769415003383/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Wang, Qiming</creatorcontrib><creatorcontrib>Zhao, Xuanhe</creatorcontrib><title>Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Biological surfaces display fascinating topographic patterns such as corrugated blood cells and wrinkled dog skin. These patterns have inspired an emerging technology in materials science and engineering to create self-organized surface patterns by harnessing mechanical instabilities. Compared with patterns generated by conventional lithography, surface instability patterns or so-called ruga patterns are low cost, are easy to fabricate, and can be dynamically controlled by tuning various physical stimuli—offering new opportunities in materials and device engineering across multiple length scales. This article provides a systematic review on the fundamental mechanisms and innovative functions of surface instability patterns by categorizing various modes of instabilities into a quantitatively defined thermodynamic phase diagram, and by highlighting their engineering and biological applications.</description><subject>Applied and Technical Physics</subject><subject>Biological</subject><subject>Blood cells</subject><subject>Characterization and Evaluation of Materials</subject><subject>Deformation</subject><subject>Energy Materials</subject><subject>Instability</subject><subject>Lithography</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Patterning via Self-organization and Self-folding</subject><subject>Phase diagrams</subject><subject>Skin</subject><subject>Stability</subject><subject>Topography</subject><subject>Tuning</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0D9PxCAcxnFiNPE83XwBTVwcbIUCLXXTi_-SMzroTGiBC9rCCTTm3r00d4MxJk4sH5788gXgFMECUVpfDj4UJUS0wJjtgRlqMMsRKek-mEHGcF5XDTkERyG8w6RgTWfg5UZtnJXZlzf2o1fhKnsa-2gGJ0WfhdFr0anM2BBFa3oTjQqZdj4bJqRH20XjbJJrEaPy1tjVMTjQog_qZPfOwdvd7eviIV8-3z8urpd5RxGJucSsamqmNGZCN5S0qqmalhHSMkmEpLUuCaYV05p2BHetZBSWAkrNNNS4rPEcnG931959jipEPpjQqb4XVrkxcMQgJBXEzUTPftF3N_p0dlJ1RTCiCJGkLraq8y4ErzRfezMIv-EI8ikvT3n5lJenvInnWx4Ssyvlf4z-7YvdvBhab-RK_fPhGzNTjNM</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Wang, Qiming</creator><creator>Zhao, Xuanhe</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20160201</creationdate><title>Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning</title><author>Wang, Qiming ; Zhao, Xuanhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-d386978ef38af954be969b844b8d4ad57f243568ff5c43cbd8502a0df8f0f3273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Biological</topic><topic>Blood cells</topic><topic>Characterization and Evaluation of Materials</topic><topic>Deformation</topic><topic>Energy Materials</topic><topic>Instability</topic><topic>Lithography</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Patterning via Self-organization and Self-folding</topic><topic>Phase diagrams</topic><topic>Skin</topic><topic>Stability</topic><topic>Topography</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiming</creatorcontrib><creatorcontrib>Zhao, Xuanhe</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiming</au><au>Zhao, Xuanhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>41</volume><issue>2</issue><spage>115</spage><epage>122</epage><pages>115-122</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Biological surfaces display fascinating topographic patterns such as corrugated blood cells and wrinkled dog skin. These patterns have inspired an emerging technology in materials science and engineering to create self-organized surface patterns by harnessing mechanical instabilities. Compared with patterns generated by conventional lithography, surface instability patterns or so-called ruga patterns are low cost, are easy to fabricate, and can be dynamically controlled by tuning various physical stimuli—offering new opportunities in materials and device engineering across multiple length scales. This article provides a systematic review on the fundamental mechanisms and innovative functions of surface instability patterns by categorizing various modes of instabilities into a quantitatively defined thermodynamic phase diagram, and by highlighting their engineering and biological applications.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2015.338</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2016-02, Vol.41 (2), p.115-122
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_miscellaneous_1800460397
source SpringerLink Journals; Cambridge University Press Journals Complete
subjects Applied and Technical Physics
Biological
Blood cells
Characterization and Evaluation of Materials
Deformation
Energy Materials
Instability
Lithography
Materials Engineering
Materials Science
Nanotechnology
Patterning via Self-organization and Self-folding
Phase diagrams
Skin
Stability
Topography
Tuning
title Beyond wrinkles: Multimodal surface instabilities for multifunctional patterning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20wrinkles:%20Multimodal%20surface%20instabilities%20for%20multifunctional%20patterning&rft.jtitle=MRS%20bulletin&rft.au=Wang,%20Qiming&rft.date=2016-02-01&rft.volume=41&rft.issue=2&rft.spage=115&rft.epage=122&rft.pages=115-122&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2015.338&rft_dat=%3Cproquest_cross%3E1800460397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764315114&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2015_338&rfr_iscdi=true