Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings

A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2016-03, Vol.18 (3), p.70-70
Hauptverfasser: Shi, Zongli, Song, Wanqing, Taheri, Saied
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 3
container_start_page 70
container_title Entropy (Basel, Switzerland)
container_volume 18
creator Shi, Zongli
Song, Wanqing
Taheri, Saied
description A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.
doi_str_mv 10.3390/e18030070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800457728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3974028721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKsH_0HAi4Kr-dgkm6P2Q8WWiujVJd3NlpTdpCZZof56IxURmcPMCw_DzAPAKUZXlEp0rXGBKEIC7YEBRlJmeUr7f-ZDcBTCGiFCCeYD8PbQbbz70DWczceX8En7ro8qGmfhxEbvNluobA0Xm2g685mwx2yulQ0wOjhVfRvh2KiVdcEE2DgPn13bag9vtfLGrsIxOGhUG_TJTx-C1-nkZXSfzRZ3D6ObWVZRwmLWCM5l3hSq5oxxShVRiKCC6bphstJ8maoSrJacCql4pZeE1qyQhcS0qPCSDsH5bm965r3XIZadCZVuW2W160OZrKCcCUGKhJ79Q9eu9zZdV2IhMBE5wiRRFzuq8i4Er5ty402n_LbEqPw2Xf6apl-uNW5W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771274012</pqid></control><display><type>article</type><title>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shi, Zongli ; Song, Wanqing ; Taheri, Saied</creator><creatorcontrib>Shi, Zongli ; Song, Wanqing ; Taheri, Saied</creatorcontrib><description>A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e18030070</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Entropy ; Faults ; Feature extraction ; Pattern recognition ; Permutations ; Roller bearings ; Vibration</subject><ispartof>Entropy (Basel, Switzerland), 2016-03, Vol.18 (3), p.70-70</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</citedby><cites>FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Zongli</creatorcontrib><creatorcontrib>Song, Wanqing</creatorcontrib><creatorcontrib>Taheri, Saied</creatorcontrib><title>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</title><title>Entropy (Basel, Switzerland)</title><description>A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.</description><subject>Algorithms</subject><subject>Entropy</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>Pattern recognition</subject><subject>Permutations</subject><subject>Roller bearings</subject><subject>Vibration</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LAzEQhoMoWKsH_0HAi4Kr-dgkm6P2Q8WWiujVJd3NlpTdpCZZof56IxURmcPMCw_DzAPAKUZXlEp0rXGBKEIC7YEBRlJmeUr7f-ZDcBTCGiFCCeYD8PbQbbz70DWczceX8En7ro8qGmfhxEbvNluobA0Xm2g685mwx2yulQ0wOjhVfRvh2KiVdcEE2DgPn13bag9vtfLGrsIxOGhUG_TJTx-C1-nkZXSfzRZ3D6ObWVZRwmLWCM5l3hSq5oxxShVRiKCC6bphstJ8maoSrJacCql4pZeE1qyQhcS0qPCSDsH5bm965r3XIZadCZVuW2W160OZrKCcCUGKhJ79Q9eu9zZdV2IhMBE5wiRRFzuq8i4Er5ty402n_LbEqPw2Xf6apl-uNW5W</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Shi, Zongli</creator><creator>Song, Wanqing</creator><creator>Taheri, Saied</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160301</creationdate><title>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</title><author>Shi, Zongli ; Song, Wanqing ; Taheri, Saied</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Entropy</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>Pattern recognition</topic><topic>Permutations</topic><topic>Roller bearings</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zongli</creatorcontrib><creatorcontrib>Song, Wanqing</creatorcontrib><creatorcontrib>Taheri, Saied</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zongli</au><au>Song, Wanqing</au><au>Taheri, Saied</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>18</volume><issue>3</issue><spage>70</spage><epage>70</epage><pages>70-70</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e18030070</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2016-03, Vol.18 (3), p.70-70
issn 1099-4300
1099-4300
language eng
recordid cdi_proquest_miscellaneous_1800457728
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Entropy
Faults
Feature extraction
Pattern recognition
Permutations
Roller bearings
Vibration
title Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20LMD,%20Permutation%20Entropy%20and%20Optimized%20K-Means%20to%20Fault%20Diagnosis%20for%20Roller%20Bearings&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Shi,%20Zongli&rft.date=2016-03-01&rft.volume=18&rft.issue=3&rft.spage=70&rft.epage=70&rft.pages=70-70&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e18030070&rft_dat=%3Cproquest_cross%3E3974028721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771274012&rft_id=info:pmid/&rfr_iscdi=true