Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings
A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of ro...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2016-03, Vol.18 (3), p.70-70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 3 |
container_start_page | 70 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 18 |
creator | Shi, Zongli Song, Wanqing Taheri, Saied |
description | A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing. |
doi_str_mv | 10.3390/e18030070 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800457728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3974028721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKsH_0HAi4Kr-dgkm6P2Q8WWiujVJd3NlpTdpCZZof56IxURmcPMCw_DzAPAKUZXlEp0rXGBKEIC7YEBRlJmeUr7f-ZDcBTCGiFCCeYD8PbQbbz70DWczceX8En7ro8qGmfhxEbvNluobA0Xm2g685mwx2yulQ0wOjhVfRvh2KiVdcEE2DgPn13bag9vtfLGrsIxOGhUG_TJTx-C1-nkZXSfzRZ3D6ObWVZRwmLWCM5l3hSq5oxxShVRiKCC6bphstJ8maoSrJacCql4pZeE1qyQhcS0qPCSDsH5bm965r3XIZadCZVuW2W160OZrKCcCUGKhJ79Q9eu9zZdV2IhMBE5wiRRFzuq8i4Er5ty402n_LbEqPw2Xf6apl-uNW5W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771274012</pqid></control><display><type>article</type><title>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shi, Zongli ; Song, Wanqing ; Taheri, Saied</creator><creatorcontrib>Shi, Zongli ; Song, Wanqing ; Taheri, Saied</creatorcontrib><description>A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e18030070</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Entropy ; Faults ; Feature extraction ; Pattern recognition ; Permutations ; Roller bearings ; Vibration</subject><ispartof>Entropy (Basel, Switzerland), 2016-03, Vol.18 (3), p.70-70</ispartof><rights>Copyright MDPI AG 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</citedby><cites>FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Zongli</creatorcontrib><creatorcontrib>Song, Wanqing</creatorcontrib><creatorcontrib>Taheri, Saied</creatorcontrib><title>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</title><title>Entropy (Basel, Switzerland)</title><description>A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.</description><subject>Algorithms</subject><subject>Entropy</subject><subject>Faults</subject><subject>Feature extraction</subject><subject>Pattern recognition</subject><subject>Permutations</subject><subject>Roller bearings</subject><subject>Vibration</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LAzEQhoMoWKsH_0HAi4Kr-dgkm6P2Q8WWiujVJd3NlpTdpCZZof56IxURmcPMCw_DzAPAKUZXlEp0rXGBKEIC7YEBRlJmeUr7f-ZDcBTCGiFCCeYD8PbQbbz70DWczceX8En7ro8qGmfhxEbvNluobA0Xm2g685mwx2yulQ0wOjhVfRvh2KiVdcEE2DgPn13bag9vtfLGrsIxOGhUG_TJTx-C1-nkZXSfzRZ3D6ObWVZRwmLWCM5l3hSq5oxxShVRiKCC6bphstJ8maoSrJacCql4pZeE1qyQhcS0qPCSDsH5bm965r3XIZadCZVuW2W160OZrKCcCUGKhJ79Q9eu9zZdV2IhMBE5wiRRFzuq8i4Er5ty402n_LbEqPw2Xf6apl-uNW5W</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Shi, Zongli</creator><creator>Song, Wanqing</creator><creator>Taheri, Saied</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160301</creationdate><title>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</title><author>Shi, Zongli ; Song, Wanqing ; Taheri, Saied</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f76694f8ad655633a2a02085edf59ce6b6b6c75d96379a6ceb23d58989138c1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Entropy</topic><topic>Faults</topic><topic>Feature extraction</topic><topic>Pattern recognition</topic><topic>Permutations</topic><topic>Roller bearings</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zongli</creatorcontrib><creatorcontrib>Song, Wanqing</creatorcontrib><creatorcontrib>Taheri, Saied</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zongli</au><au>Song, Wanqing</au><au>Taheri, Saied</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>18</volume><issue>3</issue><spage>70</spage><epage>70</epage><pages>70-70</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal to suppress its edge effect. After decomposing the extended signal into a set of product functions (PFs), the PE is utilized to display the complexity of the PF component and extract the fault feature meanwhile. Then, the optimized K-means algorithm is used to cluster analysis as a new pattern recognition approach, which uses the probability density distribution (PDD) to identify the initial centroid selection and has the priority of recognition accuracy compared with the classic one. Finally, the experiment results show the proposed method is effectively to fault extraction and recognition for roller bearing.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/e18030070</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2016-03, Vol.18 (3), p.70-70 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800457728 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Entropy Faults Feature extraction Pattern recognition Permutations Roller bearings Vibration |
title | Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20LMD,%20Permutation%20Entropy%20and%20Optimized%20K-Means%20to%20Fault%20Diagnosis%20for%20Roller%20Bearings&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Shi,%20Zongli&rft.date=2016-03-01&rft.volume=18&rft.issue=3&rft.spage=70&rft.epage=70&rft.pages=70-70&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e18030070&rft_dat=%3Cproquest_cross%3E3974028721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771274012&rft_id=info:pmid/&rfr_iscdi=true |