Lifted Euclidean inequalities for the integer single node flow set with upper bounds
•We introduce the family of lifted Euclidean inequalities for an integer single node flow set•We provide a polyhedral description of the convex hull of the feasible set•We test the effectiveness of these inequalities in three mixed integer problems In this paper we discuss the polyhedral structure o...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2016-05, Vol.251 (1), p.53-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | European journal of operational research |
container_volume | 251 |
creator | Agra, Agostinho Constantino, Miguel Fragoso |
description | •We introduce the family of lifted Euclidean inequalities for an integer single node flow set•We provide a polyhedral description of the convex hull of the feasible set•We test the effectiveness of these inequalities in three mixed integer problems
In this paper we discuss the polyhedral structure of the integer single node flow set with two possible values for the upper bounds on the arc flows. Such mixed integer sets arise as substructures in complex mixed integer programs for real application problems.
This work builds on results for the integer single node flow polytope with two arcs given by Agra and Constantino, 2006a. Valid inequalities are extended to a new family, the lifted Euclidean inequalities, and a complete description of the convex hull is given. All the coefficients of the facet-defining inequalities can be computed in polynomial time.
We report on some computational experimentations for three problems: an inventory distribution problem, a facility location problem and a multi-item production planning model. |
doi_str_mv | 10.1016/j.ejor.2015.10.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800453482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221715009832</els_id><sourcerecordid>3950209091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-337a931ab20cb705c547767042fb14fd1662d4d6c246913cbe2e8e7018a79fb33</originalsourceid><addsrcrecordid>eNp9kD1rwzAURUVpoenHH-gk6NLFriTLkg1dSkg_INAlnYUtPScyjpVIckP_fRXSqUMnwdW5j_cOQneU5JRQ8djn0DufM0LLFOSklGdoRivJMlEJco5mpJAyY4zKS3QVQk9IImk5Q6ul7SIYvJj0YA00I7Yj7KdmsNFCwJ3zOG4ghRHW4HGw43oAPDoDuBvcAQeI-GDjBk-7Xfpv3TSacIMuumYIcPv7XqPPl8Vq_pYtP17f58_LTHPKY1YUsqkL2rSM6FaSUpdcSiEJZ11LeWeoEMxwIzTjoqaFboFBBZLQqpF11xbFNXo4zd15t58gRLW1QcMwNCO4KShaEcLLglcsofd_0N5NfkzbKSoFl0RWvE4UO1HauxA8dGrn7bbx34oSdRStenUUrY6ij1kSnUpPpxKkU78seBW0hVGDsR50VMbZ_-o_FOWF4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764707849</pqid></control><display><type>article</type><title>Lifted Euclidean inequalities for the integer single node flow set with upper bounds</title><source>Access via ScienceDirect (Elsevier)</source><creator>Agra, Agostinho ; Constantino, Miguel Fragoso</creator><creatorcontrib>Agra, Agostinho ; Constantino, Miguel Fragoso</creatorcontrib><description>•We introduce the family of lifted Euclidean inequalities for an integer single node flow set•We provide a polyhedral description of the convex hull of the feasible set•We test the effectiveness of these inequalities in three mixed integer problems
In this paper we discuss the polyhedral structure of the integer single node flow set with two possible values for the upper bounds on the arc flows. Such mixed integer sets arise as substructures in complex mixed integer programs for real application problems.
This work builds on results for the integer single node flow polytope with two arcs given by Agra and Constantino, 2006a. Valid inequalities are extended to a new family, the lifted Euclidean inequalities, and a complete description of the convex hull is given. All the coefficients of the facet-defining inequalities can be computed in polynomial time.
We report on some computational experimentations for three problems: an inventory distribution problem, a facility location problem and a multi-item production planning model.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2015.10.057</identifier><identifier>CODEN: EJORDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computation ; Construction ; Euclidean space ; Inequalities ; Integer programming ; Integers ; Inventory management ; Mathematical models ; Mathematical problems ; Mixed integer ; Mixed integer programming ; Operational research ; Polyhedra ; Polyhedral description ; Polynomials ; Production planning ; Single node flow set ; Studies ; Upper bounds ; Valid inequalities</subject><ispartof>European journal of operational research, 2016-05, Vol.251 (1), p.53-63</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. May 16, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c414t-337a931ab20cb705c547767042fb14fd1662d4d6c246913cbe2e8e7018a79fb33</cites><orcidid>0000-0002-4672-6099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejor.2015.10.057$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Agra, Agostinho</creatorcontrib><creatorcontrib>Constantino, Miguel Fragoso</creatorcontrib><title>Lifted Euclidean inequalities for the integer single node flow set with upper bounds</title><title>European journal of operational research</title><description>•We introduce the family of lifted Euclidean inequalities for an integer single node flow set•We provide a polyhedral description of the convex hull of the feasible set•We test the effectiveness of these inequalities in three mixed integer problems
In this paper we discuss the polyhedral structure of the integer single node flow set with two possible values for the upper bounds on the arc flows. Such mixed integer sets arise as substructures in complex mixed integer programs for real application problems.
This work builds on results for the integer single node flow polytope with two arcs given by Agra and Constantino, 2006a. Valid inequalities are extended to a new family, the lifted Euclidean inequalities, and a complete description of the convex hull is given. All the coefficients of the facet-defining inequalities can be computed in polynomial time.
We report on some computational experimentations for three problems: an inventory distribution problem, a facility location problem and a multi-item production planning model.</description><subject>Computation</subject><subject>Construction</subject><subject>Euclidean space</subject><subject>Inequalities</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Inventory management</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mixed integer</subject><subject>Mixed integer programming</subject><subject>Operational research</subject><subject>Polyhedra</subject><subject>Polyhedral description</subject><subject>Polynomials</subject><subject>Production planning</subject><subject>Single node flow set</subject><subject>Studies</subject><subject>Upper bounds</subject><subject>Valid inequalities</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1rwzAURUVpoenHH-gk6NLFriTLkg1dSkg_INAlnYUtPScyjpVIckP_fRXSqUMnwdW5j_cOQneU5JRQ8djn0DufM0LLFOSklGdoRivJMlEJco5mpJAyY4zKS3QVQk9IImk5Q6ul7SIYvJj0YA00I7Yj7KdmsNFCwJ3zOG4ghRHW4HGw43oAPDoDuBvcAQeI-GDjBk-7Xfpv3TSacIMuumYIcPv7XqPPl8Vq_pYtP17f58_LTHPKY1YUsqkL2rSM6FaSUpdcSiEJZ11LeWeoEMxwIzTjoqaFboFBBZLQqpF11xbFNXo4zd15t58gRLW1QcMwNCO4KShaEcLLglcsofd_0N5NfkzbKSoFl0RWvE4UO1HauxA8dGrn7bbx34oSdRStenUUrY6ij1kSnUpPpxKkU78seBW0hVGDsR50VMbZ_-o_FOWF4w</recordid><startdate>20160516</startdate><enddate>20160516</enddate><creator>Agra, Agostinho</creator><creator>Constantino, Miguel Fragoso</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TA</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4672-6099</orcidid></search><sort><creationdate>20160516</creationdate><title>Lifted Euclidean inequalities for the integer single node flow set with upper bounds</title><author>Agra, Agostinho ; Constantino, Miguel Fragoso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-337a931ab20cb705c547767042fb14fd1662d4d6c246913cbe2e8e7018a79fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computation</topic><topic>Construction</topic><topic>Euclidean space</topic><topic>Inequalities</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Inventory management</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mixed integer</topic><topic>Mixed integer programming</topic><topic>Operational research</topic><topic>Polyhedra</topic><topic>Polyhedral description</topic><topic>Polynomials</topic><topic>Production planning</topic><topic>Single node flow set</topic><topic>Studies</topic><topic>Upper bounds</topic><topic>Valid inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agra, Agostinho</creatorcontrib><creatorcontrib>Constantino, Miguel Fragoso</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Materials Business File</collection><collection>Materials Research Database</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agra, Agostinho</au><au>Constantino, Miguel Fragoso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifted Euclidean inequalities for the integer single node flow set with upper bounds</atitle><jtitle>European journal of operational research</jtitle><date>2016-05-16</date><risdate>2016</risdate><volume>251</volume><issue>1</issue><spage>53</spage><epage>63</epage><pages>53-63</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><coden>EJORDT</coden><abstract>•We introduce the family of lifted Euclidean inequalities for an integer single node flow set•We provide a polyhedral description of the convex hull of the feasible set•We test the effectiveness of these inequalities in three mixed integer problems
In this paper we discuss the polyhedral structure of the integer single node flow set with two possible values for the upper bounds on the arc flows. Such mixed integer sets arise as substructures in complex mixed integer programs for real application problems.
This work builds on results for the integer single node flow polytope with two arcs given by Agra and Constantino, 2006a. Valid inequalities are extended to a new family, the lifted Euclidean inequalities, and a complete description of the convex hull is given. All the coefficients of the facet-defining inequalities can be computed in polynomial time.
We report on some computational experimentations for three problems: an inventory distribution problem, a facility location problem and a multi-item production planning model.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2015.10.057</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4672-6099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-2217 |
ispartof | European journal of operational research, 2016-05, Vol.251 (1), p.53-63 |
issn | 0377-2217 1872-6860 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800453482 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computation Construction Euclidean space Inequalities Integer programming Integers Inventory management Mathematical models Mathematical problems Mixed integer Mixed integer programming Operational research Polyhedra Polyhedral description Polynomials Production planning Single node flow set Studies Upper bounds Valid inequalities |
title | Lifted Euclidean inequalities for the integer single node flow set with upper bounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifted%20Euclidean%20inequalities%20for%20the%20integer%20single%20node%20flow%20set%20with%20upper%20bounds&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Agra,%20Agostinho&rft.date=2016-05-16&rft.volume=251&rft.issue=1&rft.spage=53&rft.epage=63&rft.pages=53-63&rft.issn=0377-2217&rft.eissn=1872-6860&rft.coden=EJORDT&rft_id=info:doi/10.1016/j.ejor.2015.10.057&rft_dat=%3Cproquest_cross%3E3950209091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764707849&rft_id=info:pmid/&rft_els_id=S0377221715009832&rfr_iscdi=true |