Classification of moving vehicle using multi-frame time domain features

This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different wea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Paulraj, M. P., Adom, A. H., Sundararaj, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue
container_start_page 529
container_title
container_volume
creator Paulraj, M. P.
Adom, A. H.
Sundararaj, S.
description This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.
doi_str_mv 10.1109/ISCO.2013.6481211
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800446190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6481211</ieee_id><sourcerecordid>1800446190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-22bd35940d3eebdb60b15d583fcd6c93ce2508bb88ec1672ba39584adc3fbfff3</originalsourceid><addsrcrecordid>eNotUEtLw0AYXBFBrfkB4iVHL6nfPrLZHCVoLRR6UM9hH9_qSh41mxT896aklxkGZoZhCLmnsKYUyqfte7VfM6B8LYWijNILkpSFokIWXEjgcEluF8HzMr8mSYw_ADBnJWfshmyqRscYfLB6DH2X9j5t-2PovtIjfgfbYDrFk2qnZgyZH3SL6RhmcH2rQ5d61OM0YLwjV143EZMzr8jn68tH9Zbt9ptt9bzLAgM1ZowZNw8R4DiicUaCobnLFffWSVtyiywHZYxSaKksmNG8zJXQznJvvPd8RR6X3sPQ_04Yx7oN0WLT6A77KdZUAQghaQmz9WGxBkSsD0No9fBXn2_i_xvcXAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1800446190</pqid></control><display><type>conference_proceeding</type><title>Classification of moving vehicle using multi-frame time domain features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Paulraj, M. P. ; Adom, A. H. ; Sundararaj, S.</creator><creatorcontrib>Paulraj, M. P. ; Adom, A. H. ; Sundararaj, S.</creatorcontrib><description>This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.</description><identifier>ISBN: 1467343595</identifier><identifier>ISBN: 9781467343596</identifier><identifier>EISBN: 9781467346030</identifier><identifier>EISBN: 9781467346023</identifier><identifier>EISBN: 1467346020</identifier><identifier>EISBN: 1467346039</identifier><identifier>DOI: 10.1109/ISCO.2013.6481211</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Acoustic noise ; Acoustics ; Auto Regressive Model ; Automotive engineering ; Biology ; Classification ; Differentially Hearing Ability Abled (DHAA) ; Feature extraction ; Networks ; Radial Basis Function Network (RBFN) ; Signatures ; Statistical Features ; Vehicles</subject><ispartof>2013 7th International Conference on Intelligent Systems and Control (ISCO), 2013, p.529-533</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6481211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6481211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paulraj, M. P.</creatorcontrib><creatorcontrib>Adom, A. H.</creatorcontrib><creatorcontrib>Sundararaj, S.</creatorcontrib><title>Classification of moving vehicle using multi-frame time domain features</title><title>2013 7th International Conference on Intelligent Systems and Control (ISCO)</title><addtitle>ISCO</addtitle><description>This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.</description><subject>Accuracy</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Auto Regressive Model</subject><subject>Automotive engineering</subject><subject>Biology</subject><subject>Classification</subject><subject>Differentially Hearing Ability Abled (DHAA)</subject><subject>Feature extraction</subject><subject>Networks</subject><subject>Radial Basis Function Network (RBFN)</subject><subject>Signatures</subject><subject>Statistical Features</subject><subject>Vehicles</subject><isbn>1467343595</isbn><isbn>9781467343596</isbn><isbn>9781467346030</isbn><isbn>9781467346023</isbn><isbn>1467346020</isbn><isbn>1467346039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLw0AYXBFBrfkB4iVHL6nfPrLZHCVoLRR6UM9hH9_qSh41mxT896aklxkGZoZhCLmnsKYUyqfte7VfM6B8LYWijNILkpSFokIWXEjgcEluF8HzMr8mSYw_ADBnJWfshmyqRscYfLB6DH2X9j5t-2PovtIjfgfbYDrFk2qnZgyZH3SL6RhmcH2rQ5d61OM0YLwjV143EZMzr8jn68tH9Zbt9ptt9bzLAgM1ZowZNw8R4DiicUaCobnLFffWSVtyiywHZYxSaKksmNG8zJXQznJvvPd8RR6X3sPQ_04Yx7oN0WLT6A77KdZUAQghaQmz9WGxBkSsD0No9fBXn2_i_xvcXAk</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Paulraj, M. P.</creator><creator>Adom, A. H.</creator><creator>Sundararaj, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Classification of moving vehicle using multi-frame time domain features</title><author>Paulraj, M. P. ; Adom, A. H. ; Sundararaj, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-22bd35940d3eebdb60b15d583fcd6c93ce2508bb88ec1672ba39584adc3fbfff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Auto Regressive Model</topic><topic>Automotive engineering</topic><topic>Biology</topic><topic>Classification</topic><topic>Differentially Hearing Ability Abled (DHAA)</topic><topic>Feature extraction</topic><topic>Networks</topic><topic>Radial Basis Function Network (RBFN)</topic><topic>Signatures</topic><topic>Statistical Features</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Paulraj, M. P.</creatorcontrib><creatorcontrib>Adom, A. H.</creatorcontrib><creatorcontrib>Sundararaj, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paulraj, M. P.</au><au>Adom, A. H.</au><au>Sundararaj, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of moving vehicle using multi-frame time domain features</atitle><btitle>2013 7th International Conference on Intelligent Systems and Control (ISCO)</btitle><stitle>ISCO</stitle><date>2013-01</date><risdate>2013</risdate><spage>529</spage><epage>533</epage><pages>529-533</pages><isbn>1467343595</isbn><isbn>9781467343596</isbn><eisbn>9781467346030</eisbn><eisbn>9781467346023</eisbn><eisbn>1467346020</eisbn><eisbn>1467346039</eisbn><abstract>This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.</abstract><pub>IEEE</pub><doi>10.1109/ISCO.2013.6481211</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467343595
ispartof 2013 7th International Conference on Intelligent Systems and Control (ISCO), 2013, p.529-533
issn
language eng
recordid cdi_proquest_miscellaneous_1800446190
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Acoustic noise
Acoustics
Auto Regressive Model
Automotive engineering
Biology
Classification
Differentially Hearing Ability Abled (DHAA)
Feature extraction
Networks
Radial Basis Function Network (RBFN)
Signatures
Statistical Features
Vehicles
title Classification of moving vehicle using multi-frame time domain features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20moving%20vehicle%20using%20multi-frame%20time%20domain%20features&rft.btitle=2013%207th%20International%20Conference%20on%20Intelligent%20Systems%20and%20Control%20(ISCO)&rft.au=Paulraj,%20M.%20P.&rft.date=2013-01&rft.spage=529&rft.epage=533&rft.pages=529-533&rft.isbn=1467343595&rft.isbn_list=9781467343596&rft_id=info:doi/10.1109/ISCO.2013.6481211&rft_dat=%3Cproquest_6IE%3E1800446190%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467346030&rft.eisbn_list=9781467346023&rft.eisbn_list=1467346020&rft.eisbn_list=1467346039&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800446190&rft_id=info:pmid/&rft_ieee_id=6481211&rfr_iscdi=true