Classification of moving vehicle using multi-frame time domain features
This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different wea...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 533 |
---|---|
container_issue | |
container_start_page | 529 |
container_title | |
container_volume | |
creator | Paulraj, M. P. Adom, A. H. Sundararaj, S. |
description | This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation. |
doi_str_mv | 10.1109/ISCO.2013.6481211 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800446190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6481211</ieee_id><sourcerecordid>1800446190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-22bd35940d3eebdb60b15d583fcd6c93ce2508bb88ec1672ba39584adc3fbfff3</originalsourceid><addsrcrecordid>eNotUEtLw0AYXBFBrfkB4iVHL6nfPrLZHCVoLRR6UM9hH9_qSh41mxT896aklxkGZoZhCLmnsKYUyqfte7VfM6B8LYWijNILkpSFokIWXEjgcEluF8HzMr8mSYw_ADBnJWfshmyqRscYfLB6DH2X9j5t-2PovtIjfgfbYDrFk2qnZgyZH3SL6RhmcH2rQ5d61OM0YLwjV143EZMzr8jn68tH9Zbt9ptt9bzLAgM1ZowZNw8R4DiicUaCobnLFffWSVtyiywHZYxSaKksmNG8zJXQznJvvPd8RR6X3sPQ_04Yx7oN0WLT6A77KdZUAQghaQmz9WGxBkSsD0No9fBXn2_i_xvcXAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1800446190</pqid></control><display><type>conference_proceeding</type><title>Classification of moving vehicle using multi-frame time domain features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Paulraj, M. P. ; Adom, A. H. ; Sundararaj, S.</creator><creatorcontrib>Paulraj, M. P. ; Adom, A. H. ; Sundararaj, S.</creatorcontrib><description>This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.</description><identifier>ISBN: 1467343595</identifier><identifier>ISBN: 9781467343596</identifier><identifier>EISBN: 9781467346030</identifier><identifier>EISBN: 9781467346023</identifier><identifier>EISBN: 1467346020</identifier><identifier>EISBN: 1467346039</identifier><identifier>DOI: 10.1109/ISCO.2013.6481211</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Acoustic noise ; Acoustics ; Auto Regressive Model ; Automotive engineering ; Biology ; Classification ; Differentially Hearing Ability Abled (DHAA) ; Feature extraction ; Networks ; Radial Basis Function Network (RBFN) ; Signatures ; Statistical Features ; Vehicles</subject><ispartof>2013 7th International Conference on Intelligent Systems and Control (ISCO), 2013, p.529-533</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6481211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6481211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paulraj, M. P.</creatorcontrib><creatorcontrib>Adom, A. H.</creatorcontrib><creatorcontrib>Sundararaj, S.</creatorcontrib><title>Classification of moving vehicle using multi-frame time domain features</title><title>2013 7th International Conference on Intelligent Systems and Control (ISCO)</title><addtitle>ISCO</addtitle><description>This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.</description><subject>Accuracy</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Auto Regressive Model</subject><subject>Automotive engineering</subject><subject>Biology</subject><subject>Classification</subject><subject>Differentially Hearing Ability Abled (DHAA)</subject><subject>Feature extraction</subject><subject>Networks</subject><subject>Radial Basis Function Network (RBFN)</subject><subject>Signatures</subject><subject>Statistical Features</subject><subject>Vehicles</subject><isbn>1467343595</isbn><isbn>9781467343596</isbn><isbn>9781467346030</isbn><isbn>9781467346023</isbn><isbn>1467346020</isbn><isbn>1467346039</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUEtLw0AYXBFBrfkB4iVHL6nfPrLZHCVoLRR6UM9hH9_qSh41mxT896aklxkGZoZhCLmnsKYUyqfte7VfM6B8LYWijNILkpSFokIWXEjgcEluF8HzMr8mSYw_ADBnJWfshmyqRscYfLB6DH2X9j5t-2PovtIjfgfbYDrFk2qnZgyZH3SL6RhmcH2rQ5d61OM0YLwjV143EZMzr8jn68tH9Zbt9ptt9bzLAgM1ZowZNw8R4DiicUaCobnLFffWSVtyiywHZYxSaKksmNG8zJXQznJvvPd8RR6X3sPQ_04Yx7oN0WLT6A77KdZUAQghaQmz9WGxBkSsD0No9fBXn2_i_xvcXAk</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Paulraj, M. P.</creator><creator>Adom, A. H.</creator><creator>Sundararaj, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Classification of moving vehicle using multi-frame time domain features</title><author>Paulraj, M. P. ; Adom, A. H. ; Sundararaj, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-22bd35940d3eebdb60b15d583fcd6c93ce2508bb88ec1672ba39584adc3fbfff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Auto Regressive Model</topic><topic>Automotive engineering</topic><topic>Biology</topic><topic>Classification</topic><topic>Differentially Hearing Ability Abled (DHAA)</topic><topic>Feature extraction</topic><topic>Networks</topic><topic>Radial Basis Function Network (RBFN)</topic><topic>Signatures</topic><topic>Statistical Features</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Paulraj, M. P.</creatorcontrib><creatorcontrib>Adom, A. H.</creatorcontrib><creatorcontrib>Sundararaj, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paulraj, M. P.</au><au>Adom, A. H.</au><au>Sundararaj, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of moving vehicle using multi-frame time domain features</atitle><btitle>2013 7th International Conference on Intelligent Systems and Control (ISCO)</btitle><stitle>ISCO</stitle><date>2013-01</date><risdate>2013</risdate><spage>529</spage><epage>533</epage><pages>529-533</pages><isbn>1467343595</isbn><isbn>9781467343596</isbn><eisbn>9781467346030</eisbn><eisbn>9781467346023</eisbn><eisbn>1467346020</eisbn><eisbn>1467346039</eisbn><abstract>This research work is mainly focused on recognition of different vehicles and its position using acoustic sound source to assist the Differentially Hearing Ability Abled (DHAA). In this paper, a simple protocol has been designed to record the noise emanated by the moving vehicles under different weather conditions and also at different vehicle speed. Two feature extraction methods namely Auto regressive and statistical feature methods are used to extract the features from the recorded acoustic signature. The Radial Basis Function Network (RBFN) model was used for classification. The networks effectiveness has been validated through stimulation.</abstract><pub>IEEE</pub><doi>10.1109/ISCO.2013.6481211</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467343595 |
ispartof | 2013 7th International Conference on Intelligent Systems and Control (ISCO), 2013, p.529-533 |
issn | |
language | eng |
recordid | cdi_proquest_miscellaneous_1800446190 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Acoustic noise Acoustics Auto Regressive Model Automotive engineering Biology Classification Differentially Hearing Ability Abled (DHAA) Feature extraction Networks Radial Basis Function Network (RBFN) Signatures Statistical Features Vehicles |
title | Classification of moving vehicle using multi-frame time domain features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20moving%20vehicle%20using%20multi-frame%20time%20domain%20features&rft.btitle=2013%207th%20International%20Conference%20on%20Intelligent%20Systems%20and%20Control%20(ISCO)&rft.au=Paulraj,%20M.%20P.&rft.date=2013-01&rft.spage=529&rft.epage=533&rft.pages=529-533&rft.isbn=1467343595&rft.isbn_list=9781467343596&rft_id=info:doi/10.1109/ISCO.2013.6481211&rft_dat=%3Cproquest_6IE%3E1800446190%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467346030&rft.eisbn_list=9781467346023&rft.eisbn_list=1467346020&rft.eisbn_list=1467346039&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800446190&rft_id=info:pmid/&rft_ieee_id=6481211&rfr_iscdi=true |