Texton clustering for local classification using scene-context scale

Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective region size of local context to classify an image pixel in a scene. This paper presents texton clustering for local class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yousun Kang, Akihiro, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue
container_start_page 26
container_title
container_volume
creator Yousun Kang
Akihiro, S.
description Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective region size of local context to classify an image pixel in a scene. This paper presents texton clustering for local classification using scene-context scale. The scene-context scale can be estimated by the entropy of the leaf node in multi-scale texton forests. The multi-scale texton forests efficiently provide both hierarchical clustering into semantic textons and local classification depending on different scale levels. In our experiments, we use MSRC21 segmentation dataset to assess our clustering algorithm and show that the usage of the scene-context scale improves recognition performance.
doi_str_mv 10.1109/FCV.2013.6485454
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800440278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6485454</ieee_id><sourcerecordid>1800440278</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-1a026c50e4dc1afb705b6893819bf86633625b522d9b58c3cb04e594531f305f3</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxSMiqOveBS89emmdfDY9SnVVWPCyei1pdiKRbLs2Keh_b2QXvMzwZn7vMQwh1xQqSqG5W7XvFQPKKyW0FFKckEsqVM2lYpSd_gsQ52QZ4ycAZF-dywV52OB3GofChjkmnPzwUbhxKsJoTchDE6N33prkMzPHv3W0OGBpxyFlZ1Ym4BU5cyZEXB77grytHjftc7l-fXpp79elZ6BTSQ0wZSWg2FpqXF-D7JVuuKZN77RSnCsme8nYtumlttz2IFA2QnLqOEjHF-T2kLufxq8ZY-p2Pp8TghlwnGNHNYAQwGqd0ZsD6hGx209-Z6af7vgg_gs6T1hl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1800440278</pqid></control><display><type>conference_proceeding</type><title>Texton clustering for local classification using scene-context scale</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yousun Kang ; Akihiro, S.</creator><creatorcontrib>Yousun Kang ; Akihiro, S.</creatorcontrib><description>Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective region size of local context to classify an image pixel in a scene. This paper presents texton clustering for local classification using scene-context scale. The scene-context scale can be estimated by the entropy of the leaf node in multi-scale texton forests. The multi-scale texton forests efficiently provide both hierarchical clustering into semantic textons and local classification depending on different scale levels. In our experiments, we use MSRC21 segmentation dataset to assess our clustering algorithm and show that the usage of the scene-context scale improves recognition performance.</description><identifier>ISBN: 1467356204</identifier><identifier>ISBN: 9781467356206</identifier><identifier>EISBN: 1467356212</identifier><identifier>EISBN: 9781467356213</identifier><identifier>DOI: 10.1109/FCV.2013.6485454</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification ; Clustering ; Computer vision ; Context ; Decision trees ; Entropy ; Forests ; Image classification ; Object recognition ; Scene analysis ; Segmentation ; Semantics ; Vegetation</subject><ispartof>2013 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV2013), 2013, p.26-30</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6485454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,27903,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6485454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yousun Kang</creatorcontrib><creatorcontrib>Akihiro, S.</creatorcontrib><title>Texton clustering for local classification using scene-context scale</title><title>2013 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV2013)</title><addtitle>FCV</addtitle><description>Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective region size of local context to classify an image pixel in a scene. This paper presents texton clustering for local classification using scene-context scale. The scene-context scale can be estimated by the entropy of the leaf node in multi-scale texton forests. The multi-scale texton forests efficiently provide both hierarchical clustering into semantic textons and local classification depending on different scale levels. In our experiments, we use MSRC21 segmentation dataset to assess our clustering algorithm and show that the usage of the scene-context scale improves recognition performance.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer vision</subject><subject>Context</subject><subject>Decision trees</subject><subject>Entropy</subject><subject>Forests</subject><subject>Image classification</subject><subject>Object recognition</subject><subject>Scene analysis</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Vegetation</subject><isbn>1467356204</isbn><isbn>9781467356206</isbn><isbn>1467356212</isbn><isbn>9781467356213</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1LxDAQxSMiqOveBS89emmdfDY9SnVVWPCyei1pdiKRbLs2Keh_b2QXvMzwZn7vMQwh1xQqSqG5W7XvFQPKKyW0FFKckEsqVM2lYpSd_gsQ52QZ4ycAZF-dywV52OB3GofChjkmnPzwUbhxKsJoTchDE6N33prkMzPHv3W0OGBpxyFlZ1Ym4BU5cyZEXB77grytHjftc7l-fXpp79elZ6BTSQ0wZSWg2FpqXF-D7JVuuKZN77RSnCsme8nYtumlttz2IFA2QnLqOEjHF-T2kLufxq8ZY-p2Pp8TghlwnGNHNYAQwGqd0ZsD6hGx209-Z6af7vgg_gs6T1hl</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Yousun Kang</creator><creator>Akihiro, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Texton clustering for local classification using scene-context scale</title><author>Yousun Kang ; Akihiro, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-1a026c50e4dc1afb705b6893819bf86633625b522d9b58c3cb04e594531f305f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer vision</topic><topic>Context</topic><topic>Decision trees</topic><topic>Entropy</topic><topic>Forests</topic><topic>Image classification</topic><topic>Object recognition</topic><topic>Scene analysis</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Yousun Kang</creatorcontrib><creatorcontrib>Akihiro, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yousun Kang</au><au>Akihiro, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Texton clustering for local classification using scene-context scale</atitle><btitle>2013 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV2013)</btitle><stitle>FCV</stitle><date>2013-01</date><risdate>2013</risdate><spage>26</spage><epage>30</epage><pages>26-30</pages><isbn>1467356204</isbn><isbn>9781467356206</isbn><eisbn>1467356212</eisbn><eisbn>9781467356213</eisbn><abstract>Scene-context plays an important role in scene analysis and object recognition. Among various sources of scene-context, we focus on scene-context scale, which means the effective region size of local context to classify an image pixel in a scene. This paper presents texton clustering for local classification using scene-context scale. The scene-context scale can be estimated by the entropy of the leaf node in multi-scale texton forests. The multi-scale texton forests efficiently provide both hierarchical clustering into semantic textons and local classification depending on different scale levels. In our experiments, we use MSRC21 segmentation dataset to assess our clustering algorithm and show that the usage of the scene-context scale improves recognition performance.</abstract><pub>IEEE</pub><doi>10.1109/FCV.2013.6485454</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467356204
ispartof 2013 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV2013), 2013, p.26-30
issn
language eng
recordid cdi_proquest_miscellaneous_1800440278
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Classification
Clustering
Computer vision
Context
Decision trees
Entropy
Forests
Image classification
Object recognition
Scene analysis
Segmentation
Semantics
Vegetation
title Texton clustering for local classification using scene-context scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Texton%20clustering%20for%20local%20classification%20using%20scene-context%20scale&rft.btitle=2013%2019th%20Korea-Japan%20Joint%20Workshop%20on%20Frontiers%20of%20Computer%20Vision%20(FCV2013)&rft.au=Yousun%20Kang&rft.date=2013-01&rft.spage=26&rft.epage=30&rft.pages=26-30&rft.isbn=1467356204&rft.isbn_list=9781467356206&rft_id=info:doi/10.1109/FCV.2013.6485454&rft_dat=%3Cproquest_6IE%3E1800440278%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467356212&rft.eisbn_list=9781467356213&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800440278&rft_id=info:pmid/&rft_ieee_id=6485454&rfr_iscdi=true