Computational Cost Reduction and Validation of Cluster-Cluster Aggregation Model
This study introduces a new collision detection method obtained by modifying the grid partitioning method, which employs spatial- and cell-partitioning, into an aggregate mean free path-cluster-cluster aggregation (AMP-CCA) model. This modification allows the AMP-CCA model to calculate the three-dim...
Gespeichert in:
Veröffentlicht in: | Funtai Kogakkaishi 2014-01, Vol.52 (8), p.426-434 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 434 |
---|---|
container_issue | 8 |
container_start_page | 426 |
container_title | Funtai Kogakkaishi |
container_volume | 52 |
creator | Ono, Kiminori Matsukawa, Yoshiya Watanabe, Aki Dewa, Kazuki Saito, Yasuhiro Matshushita, Yohsuke Aoki, Hideyuki Era, Koki Aoki, Takayuki Yamaguchi, Togo |
description | This study introduces a new collision detection method obtained by modifying the grid partitioning method, which employs spatial- and cell-partitioning, into an aggregate mean free path-cluster-cluster aggregation (AMP-CCA) model. This modification allows the AMP-CCA model to calculate the three-dimensional aggregate morphology and particle size distributions (PSDs) with computational efficiency. As compared with the previous model, the new model successfully calculates the morphology in 15% of the computational time. The calculated PSDs for a coalesced spherical particle aggregate, as calculated by the AMP-CCA model, are in reasonable agreement with the results of the sectional model regardless of concentration. The morphology calculated by the AMP-CCA model is in good agreement with previous experimental and numerical results. The AMP-CCA model, employing direct Monte Carlo simulation, serves as a useful tool to calculate the aggregate morphology and PSDs with reasonable accuracy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800438137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800438137</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18004381373</originalsourceid><addsrcrecordid>eNqViksKwjAUAIMoWD93yNJNIDHapksJihtBRNyW0LyWStrUvuT-ovYCrgZmZkISoZRk2VbmU5JwqVKWin02JwvEJ-dpLoRIyFX7to_BhMZ3xlHtMdAb2Fh-BDWdpQ_jGvvt1FdUu4gBBjaSHup6gPqXL96CW5FZZRzCeuSSbE7Huz6zfvCvCBiKtsESnDMd-IiFUJzvpBIyk3-sb1e7RIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800438137</pqid></control><display><type>article</type><title>Computational Cost Reduction and Validation of Cluster-Cluster Aggregation Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ono, Kiminori ; Matsukawa, Yoshiya ; Watanabe, Aki ; Dewa, Kazuki ; Saito, Yasuhiro ; Matshushita, Yohsuke ; Aoki, Hideyuki ; Era, Koki ; Aoki, Takayuki ; Yamaguchi, Togo</creator><creatorcontrib>Ono, Kiminori ; Matsukawa, Yoshiya ; Watanabe, Aki ; Dewa, Kazuki ; Saito, Yasuhiro ; Matshushita, Yohsuke ; Aoki, Hideyuki ; Era, Koki ; Aoki, Takayuki ; Yamaguchi, Togo</creatorcontrib><description>This study introduces a new collision detection method obtained by modifying the grid partitioning method, which employs spatial- and cell-partitioning, into an aggregate mean free path-cluster-cluster aggregation (AMP-CCA) model. This modification allows the AMP-CCA model to calculate the three-dimensional aggregate morphology and particle size distributions (PSDs) with computational efficiency. As compared with the previous model, the new model successfully calculates the morphology in 15% of the computational time. The calculated PSDs for a coalesced spherical particle aggregate, as calculated by the AMP-CCA model, are in reasonable agreement with the results of the sectional model regardless of concentration. The morphology calculated by the AMP-CCA model is in good agreement with previous experimental and numerical results. The AMP-CCA model, employing direct Monte Carlo simulation, serves as a useful tool to calculate the aggregate morphology and PSDs with reasonable accuracy.</description><identifier>ISSN: 0386-6157</identifier><identifier>EISSN: 1883-7239</identifier><language>eng</language><subject>Accuracy ; Agglomeration ; Aggregates ; Computational efficiency ; Computer simulation ; Mathematical models ; Morphology ; Powder technology</subject><ispartof>Funtai Kogakkaishi, 2014-01, Vol.52 (8), p.426-434</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Ono, Kiminori</creatorcontrib><creatorcontrib>Matsukawa, Yoshiya</creatorcontrib><creatorcontrib>Watanabe, Aki</creatorcontrib><creatorcontrib>Dewa, Kazuki</creatorcontrib><creatorcontrib>Saito, Yasuhiro</creatorcontrib><creatorcontrib>Matshushita, Yohsuke</creatorcontrib><creatorcontrib>Aoki, Hideyuki</creatorcontrib><creatorcontrib>Era, Koki</creatorcontrib><creatorcontrib>Aoki, Takayuki</creatorcontrib><creatorcontrib>Yamaguchi, Togo</creatorcontrib><title>Computational Cost Reduction and Validation of Cluster-Cluster Aggregation Model</title><title>Funtai Kogakkaishi</title><description>This study introduces a new collision detection method obtained by modifying the grid partitioning method, which employs spatial- and cell-partitioning, into an aggregate mean free path-cluster-cluster aggregation (AMP-CCA) model. This modification allows the AMP-CCA model to calculate the three-dimensional aggregate morphology and particle size distributions (PSDs) with computational efficiency. As compared with the previous model, the new model successfully calculates the morphology in 15% of the computational time. The calculated PSDs for a coalesced spherical particle aggregate, as calculated by the AMP-CCA model, are in reasonable agreement with the results of the sectional model regardless of concentration. The morphology calculated by the AMP-CCA model is in good agreement with previous experimental and numerical results. The AMP-CCA model, employing direct Monte Carlo simulation, serves as a useful tool to calculate the aggregate morphology and PSDs with reasonable accuracy.</description><subject>Accuracy</subject><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Powder technology</subject><issn>0386-6157</issn><issn>1883-7239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqViksKwjAUAIMoWD93yNJNIDHapksJihtBRNyW0LyWStrUvuT-ovYCrgZmZkISoZRk2VbmU5JwqVKWin02JwvEJ-dpLoRIyFX7to_BhMZ3xlHtMdAb2Fh-BDWdpQ_jGvvt1FdUu4gBBjaSHup6gPqXL96CW5FZZRzCeuSSbE7Huz6zfvCvCBiKtsESnDMd-IiFUJzvpBIyk3-sb1e7RIM</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Ono, Kiminori</creator><creator>Matsukawa, Yoshiya</creator><creator>Watanabe, Aki</creator><creator>Dewa, Kazuki</creator><creator>Saito, Yasuhiro</creator><creator>Matshushita, Yohsuke</creator><creator>Aoki, Hideyuki</creator><creator>Era, Koki</creator><creator>Aoki, Takayuki</creator><creator>Yamaguchi, Togo</creator><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Computational Cost Reduction and Validation of Cluster-Cluster Aggregation Model</title><author>Ono, Kiminori ; Matsukawa, Yoshiya ; Watanabe, Aki ; Dewa, Kazuki ; Saito, Yasuhiro ; Matshushita, Yohsuke ; Aoki, Hideyuki ; Era, Koki ; Aoki, Takayuki ; Yamaguchi, Togo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18004381373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Powder technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Kiminori</creatorcontrib><creatorcontrib>Matsukawa, Yoshiya</creatorcontrib><creatorcontrib>Watanabe, Aki</creatorcontrib><creatorcontrib>Dewa, Kazuki</creatorcontrib><creatorcontrib>Saito, Yasuhiro</creatorcontrib><creatorcontrib>Matshushita, Yohsuke</creatorcontrib><creatorcontrib>Aoki, Hideyuki</creatorcontrib><creatorcontrib>Era, Koki</creatorcontrib><creatorcontrib>Aoki, Takayuki</creatorcontrib><creatorcontrib>Yamaguchi, Togo</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Funtai Kogakkaishi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Kiminori</au><au>Matsukawa, Yoshiya</au><au>Watanabe, Aki</au><au>Dewa, Kazuki</au><au>Saito, Yasuhiro</au><au>Matshushita, Yohsuke</au><au>Aoki, Hideyuki</au><au>Era, Koki</au><au>Aoki, Takayuki</au><au>Yamaguchi, Togo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Cost Reduction and Validation of Cluster-Cluster Aggregation Model</atitle><jtitle>Funtai Kogakkaishi</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>52</volume><issue>8</issue><spage>426</spage><epage>434</epage><pages>426-434</pages><issn>0386-6157</issn><eissn>1883-7239</eissn><abstract>This study introduces a new collision detection method obtained by modifying the grid partitioning method, which employs spatial- and cell-partitioning, into an aggregate mean free path-cluster-cluster aggregation (AMP-CCA) model. This modification allows the AMP-CCA model to calculate the three-dimensional aggregate morphology and particle size distributions (PSDs) with computational efficiency. As compared with the previous model, the new model successfully calculates the morphology in 15% of the computational time. The calculated PSDs for a coalesced spherical particle aggregate, as calculated by the AMP-CCA model, are in reasonable agreement with the results of the sectional model regardless of concentration. The morphology calculated by the AMP-CCA model is in good agreement with previous experimental and numerical results. The AMP-CCA model, employing direct Monte Carlo simulation, serves as a useful tool to calculate the aggregate morphology and PSDs with reasonable accuracy.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0386-6157 |
ispartof | Funtai Kogakkaishi, 2014-01, Vol.52 (8), p.426-434 |
issn | 0386-6157 1883-7239 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800438137 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Agglomeration Aggregates Computational efficiency Computer simulation Mathematical models Morphology Powder technology |
title | Computational Cost Reduction and Validation of Cluster-Cluster Aggregation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Cost%20Reduction%20and%20Validation%20of%20Cluster-Cluster%20Aggregation%20Model&rft.jtitle=Funtai%20Kogakkaishi&rft.au=Ono,%20Kiminori&rft.date=2014-01-01&rft.volume=52&rft.issue=8&rft.spage=426&rft.epage=434&rft.pages=426-434&rft.issn=0386-6157&rft.eissn=1883-7239&rft_id=info:doi/&rft_dat=%3Cproquest%3E1800438137%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800438137&rft_id=info:pmid/&rfr_iscdi=true |