Materials considerations for aerospace applications
Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding prope...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2015-12, Vol.40 (12), p.1055-1066 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1066 |
---|---|
container_issue | 12 |
container_start_page | 1055 |
container_title | MRS bulletin |
container_volume | 40 |
creator | Boyer, R.R. Cotton, J.D. Mohaghegh, M. Schafrik, R.E. |
description | Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure. |
doi_str_mv | 10.1557/mrs.2015.278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800436828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2015_278</cupid><sourcerecordid>1800436828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAgCq6rN39AwYsHWydtvnqUxVVhxYueQ5pMly79Muke_Pdm6R5EBE8ZyDPDzEvINYWMci7vOx-yHCjPcqlOyIKWhUopy_kpWYBSRSpFyc7JRQg7iAokX5Di1UzoG9OGxA59aBx6MzWxSurBJwb9EEZjMTHj2DZ2_rokZ3VswKvjuyQf68f31XO6eXt6WT1sUstEOaUuB3DS5IUUMi4hpVA1IudO1BaQGXCmYpblZSVErBAsl5VkDCsHQnJaLMntPHf0w-cew6S7JlhsW9PjsA-aKgBWCJWrSG9-0d2w933cTlMZCZUCiqjuZmXjWcFjrUffdMZ_aQr6kKCOCepDgjomGHk68xBZv0X_Y-jfPjuON13lG7fFfxq-AVJSgWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736817603</pqid></control><display><type>article</type><title>Materials considerations for aerospace applications</title><source>SpringerLink Journals</source><source>Cambridge University Press Journals Complete</source><creator>Boyer, R.R. ; Cotton, J.D. ; Mohaghegh, M. ; Schafrik, R.E.</creator><creatorcontrib>Boyer, R.R. ; Cotton, J.D. ; Mohaghegh, M. ; Schafrik, R.E.</creatorcontrib><description>Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2015.278</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aircraft accidents & safety ; Airframes ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Commercial spacecraft ; Composite materials ; Design ; Durability ; Energy efficiency ; Energy Materials ; Engines ; Lists ; Load ; Maintenance costs ; Manufacturing ; Materials Engineering ; Materials Science ; Materials selection ; Mature Applications ; Nanotechnology ; Research and development ; Transformations ; Weight reduction</subject><ispartof>MRS bulletin, 2015-12, Vol.40 (12), p.1055-1066</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</citedby><cites>FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2015.278$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088376941500278X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Boyer, R.R.</creatorcontrib><creatorcontrib>Cotton, J.D.</creatorcontrib><creatorcontrib>Mohaghegh, M.</creatorcontrib><creatorcontrib>Schafrik, R.E.</creatorcontrib><title>Materials considerations for aerospace applications</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.</description><subject>Aircraft accidents & safety</subject><subject>Airframes</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Commercial spacecraft</subject><subject>Composite materials</subject><subject>Design</subject><subject>Durability</subject><subject>Energy efficiency</subject><subject>Energy Materials</subject><subject>Engines</subject><subject>Lists</subject><subject>Load</subject><subject>Maintenance costs</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Mature Applications</subject><subject>Nanotechnology</subject><subject>Research and development</subject><subject>Transformations</subject><subject>Weight reduction</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0E1LxDAQBuAgCq6rN39AwYsHWydtvnqUxVVhxYueQ5pMly79Muke_Pdm6R5EBE8ZyDPDzEvINYWMci7vOx-yHCjPcqlOyIKWhUopy_kpWYBSRSpFyc7JRQg7iAokX5Di1UzoG9OGxA59aBx6MzWxSurBJwb9EEZjMTHj2DZ2_rokZ3VswKvjuyQf68f31XO6eXt6WT1sUstEOaUuB3DS5IUUMi4hpVA1IudO1BaQGXCmYpblZSVErBAsl5VkDCsHQnJaLMntPHf0w-cew6S7JlhsW9PjsA-aKgBWCJWrSG9-0d2w933cTlMZCZUCiqjuZmXjWcFjrUffdMZ_aQr6kKCOCepDgjomGHk68xBZv0X_Y-jfPjuON13lG7fFfxq-AVJSgWw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Boyer, R.R.</creator><creator>Cotton, J.D.</creator><creator>Mohaghegh, M.</creator><creator>Schafrik, R.E.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Materials considerations for aerospace applications</title><author>Boyer, R.R. ; Cotton, J.D. ; Mohaghegh, M. ; Schafrik, R.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aircraft accidents & safety</topic><topic>Airframes</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Commercial spacecraft</topic><topic>Composite materials</topic><topic>Design</topic><topic>Durability</topic><topic>Energy efficiency</topic><topic>Energy Materials</topic><topic>Engines</topic><topic>Lists</topic><topic>Load</topic><topic>Maintenance costs</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Mature Applications</topic><topic>Nanotechnology</topic><topic>Research and development</topic><topic>Transformations</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyer, R.R.</creatorcontrib><creatorcontrib>Cotton, J.D.</creatorcontrib><creatorcontrib>Mohaghegh, M.</creatorcontrib><creatorcontrib>Schafrik, R.E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyer, R.R.</au><au>Cotton, J.D.</au><au>Mohaghegh, M.</au><au>Schafrik, R.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials considerations for aerospace applications</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>40</volume><issue>12</issue><spage>1055</spage><epage>1066</epage><pages>1055-1066</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2015.278</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2015-12, Vol.40 (12), p.1055-1066 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800436828 |
source | SpringerLink Journals; Cambridge University Press Journals Complete |
subjects | Aircraft accidents & safety Airframes Applied and Technical Physics Characterization and Evaluation of Materials Commercial spacecraft Composite materials Design Durability Energy efficiency Energy Materials Engines Lists Load Maintenance costs Manufacturing Materials Engineering Materials Science Materials selection Mature Applications Nanotechnology Research and development Transformations Weight reduction |
title | Materials considerations for aerospace applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20considerations%20for%20aerospace%20applications&rft.jtitle=MRS%20bulletin&rft.au=Boyer,%20R.R.&rft.date=2015-12-01&rft.volume=40&rft.issue=12&rft.spage=1055&rft.epage=1066&rft.pages=1055-1066&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2015.278&rft_dat=%3Cproquest_cross%3E1800436828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736817603&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2015_278&rfr_iscdi=true |