Materials considerations for aerospace applications

Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2015-12, Vol.40 (12), p.1055-1066
Hauptverfasser: Boyer, R.R., Cotton, J.D., Mohaghegh, M., Schafrik, R.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1066
container_issue 12
container_start_page 1055
container_title MRS bulletin
container_volume 40
creator Boyer, R.R.
Cotton, J.D.
Mohaghegh, M.
Schafrik, R.E.
description Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.
doi_str_mv 10.1557/mrs.2015.278
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800436828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2015_278</cupid><sourcerecordid>1800436828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAgCq6rN39AwYsHWydtvnqUxVVhxYueQ5pMly79Muke_Pdm6R5EBE8ZyDPDzEvINYWMci7vOx-yHCjPcqlOyIKWhUopy_kpWYBSRSpFyc7JRQg7iAokX5Di1UzoG9OGxA59aBx6MzWxSurBJwb9EEZjMTHj2DZ2_rokZ3VswKvjuyQf68f31XO6eXt6WT1sUstEOaUuB3DS5IUUMi4hpVA1IudO1BaQGXCmYpblZSVErBAsl5VkDCsHQnJaLMntPHf0w-cew6S7JlhsW9PjsA-aKgBWCJWrSG9-0d2w933cTlMZCZUCiqjuZmXjWcFjrUffdMZ_aQr6kKCOCepDgjomGHk68xBZv0X_Y-jfPjuON13lG7fFfxq-AVJSgWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1736817603</pqid></control><display><type>article</type><title>Materials considerations for aerospace applications</title><source>SpringerLink Journals</source><source>Cambridge University Press Journals Complete</source><creator>Boyer, R.R. ; Cotton, J.D. ; Mohaghegh, M. ; Schafrik, R.E.</creator><creatorcontrib>Boyer, R.R. ; Cotton, J.D. ; Mohaghegh, M. ; Schafrik, R.E.</creatorcontrib><description>Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2015.278</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aircraft accidents &amp; safety ; Airframes ; Applied and Technical Physics ; Characterization and Evaluation of Materials ; Commercial spacecraft ; Composite materials ; Design ; Durability ; Energy efficiency ; Energy Materials ; Engines ; Lists ; Load ; Maintenance costs ; Manufacturing ; Materials Engineering ; Materials Science ; Materials selection ; Mature Applications ; Nanotechnology ; Research and development ; Transformations ; Weight reduction</subject><ispartof>MRS bulletin, 2015-12, Vol.40 (12), p.1055-1066</ispartof><rights>Copyright © Materials Research Society 2015</rights><rights>The Materials Research Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</citedby><cites>FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2015.278$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S088376941500278X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Boyer, R.R.</creatorcontrib><creatorcontrib>Cotton, J.D.</creatorcontrib><creatorcontrib>Mohaghegh, M.</creatorcontrib><creatorcontrib>Schafrik, R.E.</creatorcontrib><title>Materials considerations for aerospace applications</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.</description><subject>Aircraft accidents &amp; safety</subject><subject>Airframes</subject><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Commercial spacecraft</subject><subject>Composite materials</subject><subject>Design</subject><subject>Durability</subject><subject>Energy efficiency</subject><subject>Energy Materials</subject><subject>Engines</subject><subject>Lists</subject><subject>Load</subject><subject>Maintenance costs</subject><subject>Manufacturing</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Materials selection</subject><subject>Mature Applications</subject><subject>Nanotechnology</subject><subject>Research and development</subject><subject>Transformations</subject><subject>Weight reduction</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqF0E1LxDAQBuAgCq6rN39AwYsHWydtvnqUxVVhxYueQ5pMly79Muke_Pdm6R5EBE8ZyDPDzEvINYWMci7vOx-yHCjPcqlOyIKWhUopy_kpWYBSRSpFyc7JRQg7iAokX5Di1UzoG9OGxA59aBx6MzWxSurBJwb9EEZjMTHj2DZ2_rokZ3VswKvjuyQf68f31XO6eXt6WT1sUstEOaUuB3DS5IUUMi4hpVA1IudO1BaQGXCmYpblZSVErBAsl5VkDCsHQnJaLMntPHf0w-cew6S7JlhsW9PjsA-aKgBWCJWrSG9-0d2w933cTlMZCZUCiqjuZmXjWcFjrUffdMZ_aQr6kKCOCepDgjomGHk68xBZv0X_Y-jfPjuON13lG7fFfxq-AVJSgWw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Boyer, R.R.</creator><creator>Cotton, J.D.</creator><creator>Mohaghegh, M.</creator><creator>Schafrik, R.E.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20151201</creationdate><title>Materials considerations for aerospace applications</title><author>Boyer, R.R. ; Cotton, J.D. ; Mohaghegh, M. ; Schafrik, R.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d200d7a237674257768fee55d6fc0e4a0dab4c429b66ab4e0c57b744ebd067513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aircraft accidents &amp; safety</topic><topic>Airframes</topic><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Commercial spacecraft</topic><topic>Composite materials</topic><topic>Design</topic><topic>Durability</topic><topic>Energy efficiency</topic><topic>Energy Materials</topic><topic>Engines</topic><topic>Lists</topic><topic>Load</topic><topic>Maintenance costs</topic><topic>Manufacturing</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Materials selection</topic><topic>Mature Applications</topic><topic>Nanotechnology</topic><topic>Research and development</topic><topic>Transformations</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyer, R.R.</creatorcontrib><creatorcontrib>Cotton, J.D.</creatorcontrib><creatorcontrib>Mohaghegh, M.</creatorcontrib><creatorcontrib>Schafrik, R.E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyer, R.R.</au><au>Cotton, J.D.</au><au>Mohaghegh, M.</au><au>Schafrik, R.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials considerations for aerospace applications</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>40</volume><issue>12</issue><spage>1055</spage><epage>1066</epage><pages>1055-1066</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Selection of materials systems for aerospace applications, such as airframes or propulsion systems, involves multiple and challenging requirements that go beyond essential performance attributes (strength, durability, damage tolerance, and low weight). Materials must exhibit a set of demanding properties, be producible in multiple product forms, and demonstrate consistent high quality. Furthermore, they must be both commercially available and affordable. The list of materials meeting these requirements is not long. Integration and transformation of such highly engineered materials into airframe structures is likewise complex. The Boeing 747, for instance, requires more than 6,000,000 components from numerous materials systems and suppliers worldwide. This necessitates that materials be stable and that material design and structure engineering close on effective solutions simultaneously. High-temperature turbine engines demand strong, lightweight, high-temperature materials balanced by high durability and reliability in a severe service environment. Such applications provide remarkable examples of how engineering imperatives influence materials research and development for metallic and composite materials in terms of material chemistry, fabrication, and microstructure.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2015.278</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2015-12, Vol.40 (12), p.1055-1066
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_miscellaneous_1800436828
source SpringerLink Journals; Cambridge University Press Journals Complete
subjects Aircraft accidents & safety
Airframes
Applied and Technical Physics
Characterization and Evaluation of Materials
Commercial spacecraft
Composite materials
Design
Durability
Energy efficiency
Energy Materials
Engines
Lists
Load
Maintenance costs
Manufacturing
Materials Engineering
Materials Science
Materials selection
Mature Applications
Nanotechnology
Research and development
Transformations
Weight reduction
title Materials considerations for aerospace applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20considerations%20for%20aerospace%20applications&rft.jtitle=MRS%20bulletin&rft.au=Boyer,%20R.R.&rft.date=2015-12-01&rft.volume=40&rft.issue=12&rft.spage=1055&rft.epage=1066&rft.pages=1055-1066&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2015.278&rft_dat=%3Cproquest_cross%3E1800436828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1736817603&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2015_278&rfr_iscdi=true