Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide

Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part B: Atomic spectroscopy 2015-05, Vol.107, p.132-138
Hauptverfasser: Parigger, Christian G., Woods, Alexander C., Surmick, David M., Gautam, Ghaneshwar, Witte, Michael J., Hornkohl, James O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue
container_start_page 132
container_title Spectrochimica acta. Part B: Atomic spectroscopy
container_volume 107
creator Parigger, Christian G.
Woods, Alexander C.
Surmick, David M.
Gautam, Ghaneshwar
Witte, Michael J.
Hornkohl, James O.
description Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra. •We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.
doi_str_mv 10.1016/j.sab.2015.02.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800435486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S058485471500066X</els_id><sourcerecordid>1800435486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EEkvhAbjlyKFJx_8Sr3pCqxYqVeICZ2vWnkheJfZiJxV9gz52vSxCPcFpPs18v5FmPsY-cug48P7q0BXcdwK47kB0wM0rtuFmkK3UvX7NNqCNao1Ww1v2rpQDAAgt9IY97dJ8XBdcQopNGhsfcElzcM2cJnLrhLkpR3JLxmZMVVPtLuSb2oglnKhywnBa5xDXuWIx_QqeLhv3iPG3-LvSYd6neNlgrHxY6vgF8J69GXEq9OFPvWA_bm--776299--3O0-37dO9nJpzXbwxqAYCR2KfnC9dwrd1veetqT3mmtUe79VyAeuALhUiPVBQksDHkFesE_nvcecfq5UFjuH4miaMFJai-UGQEmtTP9_6yCFEQM3slr52epyKiXTaI85zJgfLQd7CsgebA3IngKyIGwNqDLXZ4bquQ-Bsi0uUHTkQ65Ptj6Ff9DPHYubXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732827183</pqid></control><display><type>article</type><title>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Parigger, Christian G. ; Woods, Alexander C. ; Surmick, David M. ; Gautam, Ghaneshwar ; Witte, Michael J. ; Hornkohl, James O.</creator><creatorcontrib>Parigger, Christian G. ; Woods, Alexander C. ; Surmick, David M. ; Gautam, Ghaneshwar ; Witte, Michael J. ; Hornkohl, James O.</creatorcontrib><description>Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra. •We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.</description><identifier>ISSN: 0584-8547</identifier><identifier>EISSN: 1873-3565</identifier><identifier>DOI: 10.1016/j.sab.2015.02.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Aluminum ; Carbon ; Computation ; Cyanides ; Laser-induced breakdown spectroscopy ; Line strengths ; Molecular spectroscopy ; Optical emission spectroscopy ; Spectra ; Temperature diagnostic ; Titanium ; Titanium dioxide</subject><ispartof>Spectrochimica acta. Part B: Atomic spectroscopy, 2015-05, Vol.107, p.132-138</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</citedby><cites>FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sab.2015.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Parigger, Christian G.</creatorcontrib><creatorcontrib>Woods, Alexander C.</creatorcontrib><creatorcontrib>Surmick, David M.</creatorcontrib><creatorcontrib>Gautam, Ghaneshwar</creatorcontrib><creatorcontrib>Witte, Michael J.</creatorcontrib><creatorcontrib>Hornkohl, James O.</creatorcontrib><title>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</title><title>Spectrochimica acta. Part B: Atomic spectroscopy</title><description>Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra. •We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Computation</subject><subject>Cyanides</subject><subject>Laser-induced breakdown spectroscopy</subject><subject>Line strengths</subject><subject>Molecular spectroscopy</subject><subject>Optical emission spectroscopy</subject><subject>Spectra</subject><subject>Temperature diagnostic</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0584-8547</issn><issn>1873-3565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EEkvhAbjlyKFJx_8Sr3pCqxYqVeICZ2vWnkheJfZiJxV9gz52vSxCPcFpPs18v5FmPsY-cug48P7q0BXcdwK47kB0wM0rtuFmkK3UvX7NNqCNao1Ww1v2rpQDAAgt9IY97dJ8XBdcQopNGhsfcElzcM2cJnLrhLkpR3JLxmZMVVPtLuSb2oglnKhywnBa5xDXuWIx_QqeLhv3iPG3-LvSYd6neNlgrHxY6vgF8J69GXEq9OFPvWA_bm--776299--3O0-37dO9nJpzXbwxqAYCR2KfnC9dwrd1veetqT3mmtUe79VyAeuALhUiPVBQksDHkFesE_nvcecfq5UFjuH4miaMFJai-UGQEmtTP9_6yCFEQM3slr52epyKiXTaI85zJgfLQd7CsgebA3IngKyIGwNqDLXZ4bquQ-Bsi0uUHTkQ65Ptj6Ff9DPHYubXA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Parigger, Christian G.</creator><creator>Woods, Alexander C.</creator><creator>Surmick, David M.</creator><creator>Gautam, Ghaneshwar</creator><creator>Witte, Michael J.</creator><creator>Hornkohl, James O.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</title><author>Parigger, Christian G. ; Woods, Alexander C. ; Surmick, David M. ; Gautam, Ghaneshwar ; Witte, Michael J. ; Hornkohl, James O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Computation</topic><topic>Cyanides</topic><topic>Laser-induced breakdown spectroscopy</topic><topic>Line strengths</topic><topic>Molecular spectroscopy</topic><topic>Optical emission spectroscopy</topic><topic>Spectra</topic><topic>Temperature diagnostic</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parigger, Christian G.</creatorcontrib><creatorcontrib>Woods, Alexander C.</creatorcontrib><creatorcontrib>Surmick, David M.</creatorcontrib><creatorcontrib>Gautam, Ghaneshwar</creatorcontrib><creatorcontrib>Witte, Michael J.</creatorcontrib><creatorcontrib>Hornkohl, James O.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parigger, Christian G.</au><au>Woods, Alexander C.</au><au>Surmick, David M.</au><au>Gautam, Ghaneshwar</au><au>Witte, Michael J.</au><au>Hornkohl, James O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</atitle><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>107</volume><spage>132</spage><epage>138</epage><pages>132-138</pages><issn>0584-8547</issn><eissn>1873-3565</eissn><abstract>Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra. •We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sab.2015.02.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0584-8547
ispartof Spectrochimica acta. Part B: Atomic spectroscopy, 2015-05, Vol.107, p.132-138
issn 0584-8547
1873-3565
language eng
recordid cdi_proquest_miscellaneous_1800435486
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Aluminum
Carbon
Computation
Cyanides
Laser-induced breakdown spectroscopy
Line strengths
Molecular spectroscopy
Optical emission spectroscopy
Spectra
Temperature diagnostic
Titanium
Titanium dioxide
title Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20diatomic%20molecular%20spectra%20for%20selected%20transitions%20of%20aluminum%20monoxide,%20cyanide,%20diatomic%20carbon,%20and%20titanium%20monoxide&rft.jtitle=Spectrochimica%20acta.%20Part%20B:%20Atomic%20spectroscopy&rft.au=Parigger,%20Christian%20G.&rft.date=2015-05-01&rft.volume=107&rft.spage=132&rft.epage=138&rft.pages=132-138&rft.issn=0584-8547&rft.eissn=1873-3565&rft_id=info:doi/10.1016/j.sab.2015.02.018&rft_dat=%3Cproquest_cross%3E1800435486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732827183&rft_id=info:pmid/&rft_els_id=S058485471500066X&rfr_iscdi=true