Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide
Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part B: Atomic spectroscopy 2015-05, Vol.107, p.132-138 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | |
container_start_page | 132 |
container_title | Spectrochimica acta. Part B: Atomic spectroscopy |
container_volume | 107 |
creator | Parigger, Christian G. Woods, Alexander C. Surmick, David M. Gautam, Ghaneshwar Witte, Michael J. Hornkohl, James O. |
description | Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra.
•We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work. |
doi_str_mv | 10.1016/j.sab.2015.02.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800435486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S058485471500066X</els_id><sourcerecordid>1800435486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EEkvhAbjlyKFJx_8Sr3pCqxYqVeICZ2vWnkheJfZiJxV9gz52vSxCPcFpPs18v5FmPsY-cug48P7q0BXcdwK47kB0wM0rtuFmkK3UvX7NNqCNao1Ww1v2rpQDAAgt9IY97dJ8XBdcQopNGhsfcElzcM2cJnLrhLkpR3JLxmZMVVPtLuSb2oglnKhywnBa5xDXuWIx_QqeLhv3iPG3-LvSYd6neNlgrHxY6vgF8J69GXEq9OFPvWA_bm--776299--3O0-37dO9nJpzXbwxqAYCR2KfnC9dwrd1veetqT3mmtUe79VyAeuALhUiPVBQksDHkFesE_nvcecfq5UFjuH4miaMFJai-UGQEmtTP9_6yCFEQM3slr52epyKiXTaI85zJgfLQd7CsgebA3IngKyIGwNqDLXZ4bquQ-Bsi0uUHTkQ65Ptj6Ff9DPHYubXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732827183</pqid></control><display><type>article</type><title>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</title><source>Access via ScienceDirect (Elsevier)</source><creator>Parigger, Christian G. ; Woods, Alexander C. ; Surmick, David M. ; Gautam, Ghaneshwar ; Witte, Michael J. ; Hornkohl, James O.</creator><creatorcontrib>Parigger, Christian G. ; Woods, Alexander C. ; Surmick, David M. ; Gautam, Ghaneshwar ; Witte, Michael J. ; Hornkohl, James O.</creatorcontrib><description>Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra.
•We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.</description><identifier>ISSN: 0584-8547</identifier><identifier>EISSN: 1873-3565</identifier><identifier>DOI: 10.1016/j.sab.2015.02.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Aluminum ; Carbon ; Computation ; Cyanides ; Laser-induced breakdown spectroscopy ; Line strengths ; Molecular spectroscopy ; Optical emission spectroscopy ; Spectra ; Temperature diagnostic ; Titanium ; Titanium dioxide</subject><ispartof>Spectrochimica acta. Part B: Atomic spectroscopy, 2015-05, Vol.107, p.132-138</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</citedby><cites>FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sab.2015.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Parigger, Christian G.</creatorcontrib><creatorcontrib>Woods, Alexander C.</creatorcontrib><creatorcontrib>Surmick, David M.</creatorcontrib><creatorcontrib>Gautam, Ghaneshwar</creatorcontrib><creatorcontrib>Witte, Michael J.</creatorcontrib><creatorcontrib>Hornkohl, James O.</creatorcontrib><title>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</title><title>Spectrochimica acta. Part B: Atomic spectroscopy</title><description>Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra.
•We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Computation</subject><subject>Cyanides</subject><subject>Laser-induced breakdown spectroscopy</subject><subject>Line strengths</subject><subject>Molecular spectroscopy</subject><subject>Optical emission spectroscopy</subject><subject>Spectra</subject><subject>Temperature diagnostic</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0584-8547</issn><issn>1873-3565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EEkvhAbjlyKFJx_8Sr3pCqxYqVeICZ2vWnkheJfZiJxV9gz52vSxCPcFpPs18v5FmPsY-cug48P7q0BXcdwK47kB0wM0rtuFmkK3UvX7NNqCNao1Ww1v2rpQDAAgt9IY97dJ8XBdcQopNGhsfcElzcM2cJnLrhLkpR3JLxmZMVVPtLuSb2oglnKhywnBa5xDXuWIx_QqeLhv3iPG3-LvSYd6neNlgrHxY6vgF8J69GXEq9OFPvWA_bm--776299--3O0-37dO9nJpzXbwxqAYCR2KfnC9dwrd1veetqT3mmtUe79VyAeuALhUiPVBQksDHkFesE_nvcecfq5UFjuH4miaMFJai-UGQEmtTP9_6yCFEQM3slr52epyKiXTaI85zJgfLQd7CsgebA3IngKyIGwNqDLXZ4bquQ-Bsi0uUHTkQ65Ptj6Ff9DPHYubXA</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Parigger, Christian G.</creator><creator>Woods, Alexander C.</creator><creator>Surmick, David M.</creator><creator>Gautam, Ghaneshwar</creator><creator>Witte, Michael J.</creator><creator>Hornkohl, James O.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</title><author>Parigger, Christian G. ; Woods, Alexander C. ; Surmick, David M. ; Gautam, Ghaneshwar ; Witte, Michael J. ; Hornkohl, James O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-897d88a2feaca267c6dc4ac9d6de9e5b515a4bd94a171400134aa01625380da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Computation</topic><topic>Cyanides</topic><topic>Laser-induced breakdown spectroscopy</topic><topic>Line strengths</topic><topic>Molecular spectroscopy</topic><topic>Optical emission spectroscopy</topic><topic>Spectra</topic><topic>Temperature diagnostic</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parigger, Christian G.</creatorcontrib><creatorcontrib>Woods, Alexander C.</creatorcontrib><creatorcontrib>Surmick, David M.</creatorcontrib><creatorcontrib>Gautam, Ghaneshwar</creatorcontrib><creatorcontrib>Witte, Michael J.</creatorcontrib><creatorcontrib>Hornkohl, James O.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parigger, Christian G.</au><au>Woods, Alexander C.</au><au>Surmick, David M.</au><au>Gautam, Ghaneshwar</au><au>Witte, Michael J.</au><au>Hornkohl, James O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide</atitle><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>107</volume><spage>132</spage><epage>138</epage><pages>132-138</pages><issn>0584-8547</issn><eissn>1873-3565</eissn><abstract>Laser ablation studies with laser-induced breakdown spectroscopy (LIBS) typically emphasize atomic species yet fingerprints from molecular species can occur subsequently or concurrently. In this work, selected molecular transitions of aluminum monixide (AlO), diatomic carbon (C2), cyanide (CN), and titanium monoxide (TiO) are accurately computed. Line strength tables are used to describe the radiative transitions of diatomic molecules primarily in the visible, optical region. Details are elaborated of the computational procedure that allows one to utilize diatomic spectra as a predictive and as a diagnostic tool. In order to create a computed spectrum, the procedure requires information regarding the temperature of the diatomic transitions along with other input such as the spectral resolution. When combined with a fitting algorithm to optimize such parameters, this procedure is used to infer information from an experimentally obtained spectrum. Furthermore, the programs and data files are provided for LIBS investigations that also reveal AlO, C2, CN, and TiO diatomic spectra.
•We present a program for fitting of molecular spectra.•This includes data base for AlO, C2, CN, and TiO.•We discuss the details of the program including fitting.•We show computed examples and reference current work.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sab.2015.02.018</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0584-8547 |
ispartof | Spectrochimica acta. Part B: Atomic spectroscopy, 2015-05, Vol.107, p.132-138 |
issn | 0584-8547 1873-3565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800435486 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Aluminum Carbon Computation Cyanides Laser-induced breakdown spectroscopy Line strengths Molecular spectroscopy Optical emission spectroscopy Spectra Temperature diagnostic Titanium Titanium dioxide |
title | Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20diatomic%20molecular%20spectra%20for%20selected%20transitions%20of%20aluminum%20monoxide,%20cyanide,%20diatomic%20carbon,%20and%20titanium%20monoxide&rft.jtitle=Spectrochimica%20acta.%20Part%20B:%20Atomic%20spectroscopy&rft.au=Parigger,%20Christian%20G.&rft.date=2015-05-01&rft.volume=107&rft.spage=132&rft.epage=138&rft.pages=132-138&rft.issn=0584-8547&rft.eissn=1873-3565&rft_id=info:doi/10.1016/j.sab.2015.02.018&rft_dat=%3Cproquest_cross%3E1800435486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732827183&rft_id=info:pmid/&rft_els_id=S058485471500066X&rfr_iscdi=true |