Linear Yukawa Isotherm Regularity for dense fluids derived based on the perturbation theory

In the present work, the thermodynamic of dense fluids, both compressed liquids and dense supercritical fluids, has been modeled, solely, based on the contribution of attraction of effective pair potential. The intermolecular interaction is modeled by the hard-core Yukawa potential (HCY) as an effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2016-02, Vol.409, p.105-112
Hauptverfasser: Sohrabi Mahboub, M., Farrokhpour, H., Parsafar, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue
container_start_page 105
container_title Fluid phase equilibria
container_volume 409
creator Sohrabi Mahboub, M.
Farrokhpour, H.
Parsafar, G.A.
description In the present work, the thermodynamic of dense fluids, both compressed liquids and dense supercritical fluids, has been modeled, solely, based on the contribution of attraction of effective pair potential. The intermolecular interaction is modeled by the hard-core Yukawa potential (HCY) as an effective pair potential (EPP) with temperature dependent hard-core diameter. Using this EPP in the exact thermodynamic relations, an equation of state (EoS) for the compressibility factor of dense fluid has been derived. This EoS shows that (Z − ZCS) as function of ρ1/3 must be linear for each isotherm of fluid where ZCS is the compressibility factor of the reference fluid (Carnahan-Starling (CS) EoS) with temperature-dependent hard-core diameter and Z is the experimental compressibility factor of fluid. To our knowledge, this is the first report on this new regularity for dense fluids only based on the perturbation theory in literature. The validity of this regularity has been tested for different fluids including Ar, Kr, Ne, H2, N2, NH3, NF3, CH4, C2H2, C3H8, C2H6, C2H4 and CH3OH. This regularity is valid for densities greater than ρB, where ρB is the Boyle density. Finally, using the proposed regularity, the values of the EPP parameters for the mentioned fluids were obtained at different temperatures.
doi_str_mv 10.1016/j.fluid.2015.08.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800433274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037838121530087X</els_id><sourcerecordid>1765966726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-892124775fad1fe1042581b346c53eae49efe847be53a4214ef27b096acae72d3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwC1g8siT4K7YzMCDER6VKSAgGxGA5yRlc0qTYSVH_PW7LDItPPj3Pne5F6JySnBIqLxe5a0ff5IzQIic6J1QdoAnVqswIY-IQTQhXOuOasmN0EuOCkERKNkFvc9-BDfh1_LTfFs9iP3xAWOIneB9bG_ywwa4PuIEuAt4tiekT_BoaXNmY3r7DScErCMMYKjv4faMPm1N05Gwb4ey3TtHL3e3zzUM2f7yf3VzPs1oQOWS6ZJQJpQpnG-qAEsEKTSsuZF1wsCBKcKCFqqDgVjAqwDFVkVLa2oJiDZ-ii_3cVei_RoiDWfpYQ9vaDvoxGqoJEZwzJf5HlSxKKRWTCeV7tA59jAGcWQW_tGFjKDHb1M3C7AIx29QN0SalnqyrvQXp4LWHYGLtoauh8QHqwTS9_9P_AQQLjJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765966726</pqid></control><display><type>article</type><title>Linear Yukawa Isotherm Regularity for dense fluids derived based on the perturbation theory</title><source>Elsevier ScienceDirect Journals</source><creator>Sohrabi Mahboub, M. ; Farrokhpour, H. ; Parsafar, G.A.</creator><creatorcontrib>Sohrabi Mahboub, M. ; Farrokhpour, H. ; Parsafar, G.A.</creatorcontrib><description>In the present work, the thermodynamic of dense fluids, both compressed liquids and dense supercritical fluids, has been modeled, solely, based on the contribution of attraction of effective pair potential. The intermolecular interaction is modeled by the hard-core Yukawa potential (HCY) as an effective pair potential (EPP) with temperature dependent hard-core diameter. Using this EPP in the exact thermodynamic relations, an equation of state (EoS) for the compressibility factor of dense fluid has been derived. This EoS shows that (Z − ZCS) as function of ρ1/3 must be linear for each isotherm of fluid where ZCS is the compressibility factor of the reference fluid (Carnahan-Starling (CS) EoS) with temperature-dependent hard-core diameter and Z is the experimental compressibility factor of fluid. To our knowledge, this is the first report on this new regularity for dense fluids only based on the perturbation theory in literature. The validity of this regularity has been tested for different fluids including Ar, Kr, Ne, H2, N2, NH3, NF3, CH4, C2H2, C3H8, C2H6, C2H4 and CH3OH. This regularity is valid for densities greater than ρB, where ρB is the Boyle density. Finally, using the proposed regularity, the values of the EPP parameters for the mentioned fluids were obtained at different temperatures.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/j.fluid.2015.08.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Carnahan-Starling ; Compressibility ; Computational fluid dynamics ; Density ; Effective pair potential ; Equation of state (EoS) ; Fluid flow ; Fluids ; Isotherms ; Linear Yukawa Isotherm Regularity (LYIR) ; Mathematical models ; Perturbation theory ; Regularity</subject><ispartof>Fluid phase equilibria, 2016-02, Vol.409, p.105-112</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-892124775fad1fe1042581b346c53eae49efe847be53a4214ef27b096acae72d3</citedby><cites>FETCH-LOGICAL-c406t-892124775fad1fe1042581b346c53eae49efe847be53a4214ef27b096acae72d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S037838121530087X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Sohrabi Mahboub, M.</creatorcontrib><creatorcontrib>Farrokhpour, H.</creatorcontrib><creatorcontrib>Parsafar, G.A.</creatorcontrib><title>Linear Yukawa Isotherm Regularity for dense fluids derived based on the perturbation theory</title><title>Fluid phase equilibria</title><description>In the present work, the thermodynamic of dense fluids, both compressed liquids and dense supercritical fluids, has been modeled, solely, based on the contribution of attraction of effective pair potential. The intermolecular interaction is modeled by the hard-core Yukawa potential (HCY) as an effective pair potential (EPP) with temperature dependent hard-core diameter. Using this EPP in the exact thermodynamic relations, an equation of state (EoS) for the compressibility factor of dense fluid has been derived. This EoS shows that (Z − ZCS) as function of ρ1/3 must be linear for each isotherm of fluid where ZCS is the compressibility factor of the reference fluid (Carnahan-Starling (CS) EoS) with temperature-dependent hard-core diameter and Z is the experimental compressibility factor of fluid. To our knowledge, this is the first report on this new regularity for dense fluids only based on the perturbation theory in literature. The validity of this regularity has been tested for different fluids including Ar, Kr, Ne, H2, N2, NH3, NF3, CH4, C2H2, C3H8, C2H6, C2H4 and CH3OH. This regularity is valid for densities greater than ρB, where ρB is the Boyle density. Finally, using the proposed regularity, the values of the EPP parameters for the mentioned fluids were obtained at different temperatures.</description><subject>Carnahan-Starling</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Effective pair potential</subject><subject>Equation of state (EoS)</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Isotherms</subject><subject>Linear Yukawa Isotherm Regularity (LYIR)</subject><subject>Mathematical models</subject><subject>Perturbation theory</subject><subject>Regularity</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwC1g8siT4K7YzMCDER6VKSAgGxGA5yRlc0qTYSVH_PW7LDItPPj3Pne5F6JySnBIqLxe5a0ff5IzQIic6J1QdoAnVqswIY-IQTQhXOuOasmN0EuOCkERKNkFvc9-BDfh1_LTfFs9iP3xAWOIneB9bG_ywwa4PuIEuAt4tiekT_BoaXNmY3r7DScErCMMYKjv4faMPm1N05Gwb4ey3TtHL3e3zzUM2f7yf3VzPs1oQOWS6ZJQJpQpnG-qAEsEKTSsuZF1wsCBKcKCFqqDgVjAqwDFVkVLa2oJiDZ-ii_3cVei_RoiDWfpYQ9vaDvoxGqoJEZwzJf5HlSxKKRWTCeV7tA59jAGcWQW_tGFjKDHb1M3C7AIx29QN0SalnqyrvQXp4LWHYGLtoauh8QHqwTS9_9P_AQQLjJk</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Sohrabi Mahboub, M.</creator><creator>Farrokhpour, H.</creator><creator>Parsafar, G.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160215</creationdate><title>Linear Yukawa Isotherm Regularity for dense fluids derived based on the perturbation theory</title><author>Sohrabi Mahboub, M. ; Farrokhpour, H. ; Parsafar, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-892124775fad1fe1042581b346c53eae49efe847be53a4214ef27b096acae72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carnahan-Starling</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Effective pair potential</topic><topic>Equation of state (EoS)</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Isotherms</topic><topic>Linear Yukawa Isotherm Regularity (LYIR)</topic><topic>Mathematical models</topic><topic>Perturbation theory</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohrabi Mahboub, M.</creatorcontrib><creatorcontrib>Farrokhpour, H.</creatorcontrib><creatorcontrib>Parsafar, G.A.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohrabi Mahboub, M.</au><au>Farrokhpour, H.</au><au>Parsafar, G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Yukawa Isotherm Regularity for dense fluids derived based on the perturbation theory</atitle><jtitle>Fluid phase equilibria</jtitle><date>2016-02-15</date><risdate>2016</risdate><volume>409</volume><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><abstract>In the present work, the thermodynamic of dense fluids, both compressed liquids and dense supercritical fluids, has been modeled, solely, based on the contribution of attraction of effective pair potential. The intermolecular interaction is modeled by the hard-core Yukawa potential (HCY) as an effective pair potential (EPP) with temperature dependent hard-core diameter. Using this EPP in the exact thermodynamic relations, an equation of state (EoS) for the compressibility factor of dense fluid has been derived. This EoS shows that (Z − ZCS) as function of ρ1/3 must be linear for each isotherm of fluid where ZCS is the compressibility factor of the reference fluid (Carnahan-Starling (CS) EoS) with temperature-dependent hard-core diameter and Z is the experimental compressibility factor of fluid. To our knowledge, this is the first report on this new regularity for dense fluids only based on the perturbation theory in literature. The validity of this regularity has been tested for different fluids including Ar, Kr, Ne, H2, N2, NH3, NF3, CH4, C2H2, C3H8, C2H6, C2H4 and CH3OH. This regularity is valid for densities greater than ρB, where ρB is the Boyle density. Finally, using the proposed regularity, the values of the EPP parameters for the mentioned fluids were obtained at different temperatures.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fluid.2015.08.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 2016-02, Vol.409, p.105-112
issn 0378-3812
1879-0224
language eng
recordid cdi_proquest_miscellaneous_1800433274
source Elsevier ScienceDirect Journals
subjects Carnahan-Starling
Compressibility
Computational fluid dynamics
Density
Effective pair potential
Equation of state (EoS)
Fluid flow
Fluids
Isotherms
Linear Yukawa Isotherm Regularity (LYIR)
Mathematical models
Perturbation theory
Regularity
title Linear Yukawa Isotherm Regularity for dense fluids derived based on the perturbation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Yukawa%20Isotherm%20Regularity%20for%20dense%20fluids%20derived%20based%20on%20the%20perturbation%20theory&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Sohrabi%20Mahboub,%20M.&rft.date=2016-02-15&rft.volume=409&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=0378-3812&rft.eissn=1879-0224&rft_id=info:doi/10.1016/j.fluid.2015.08.017&rft_dat=%3Cproquest_cross%3E1765966726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765966726&rft_id=info:pmid/&rft_els_id=S037838121530087X&rfr_iscdi=true