Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure

The densities of metastable and resonant states of Ar atoms are measured in high pressure Ar radio frequency discharge. Resonant absorption spectroscopy for the case of a low pressure spectral lamp and high-pressure plasma absorption lines is implemented for this purpose. The necessary generalizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part B: Atomic spectroscopy 2015-05, Vol.107, p.75-85
Hauptverfasser: Li, L., Nikiforov, A., Britun, N., Snyders, R., Leys, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 75
container_title Spectrochimica acta. Part B: Atomic spectroscopy
container_volume 107
creator Li, L.
Nikiforov, A.
Britun, N.
Snyders, R.
Leys, C.
description The densities of metastable and resonant states of Ar atoms are measured in high pressure Ar radio frequency discharge. Resonant absorption spectroscopy for the case of a low pressure spectral lamp and high-pressure plasma absorption lines is implemented for this purpose. The necessary generalizations for the high-pressure resonant absorption method are given. Absolute density of Ar 1s levels obtained at different RF input power and operating pressures are of the order of 1011cm−3, which is in a good agreement with those reported in the literature. The population distribution on the Ar 2p (excited) levels, obtained from the optical emission spectroscopy, reveals strong deviation from thermal equilibrium for these levels in the high-pressure case. The generation of the Ar excited states in the studied discharges is compared to the previously reported results. •Strong non-equilibrium distribution of Ar 2p levels is observed.•The absolute number density of non-radiative Ar 1s states is determined by the easier and low cost spectral-lamp absorption method.•The modified absorption theory of Mitchell and Zemanski was used to obtain the absolute number density of Ar 1s states at high pressure.•The developed RF source with 5cm long gap can be a possible alternative to micro-plasma working in Ar at atmospheric pressure.
doi_str_mv 10.1016/j.sab.2015.02.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800432476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0584854715000646</els_id><sourcerecordid>1800432476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2086-99770b2ed67f569822a139f95546e0e2caa8808c24c3815c8390221266a1ad423</originalsourceid><addsrcrecordid>eNqFkc1uFDEQhC1EJJYkD8DNRy4z-Gf8M-IURSFBCuICZ8vr6Qle7Y6N24NY3iHvjFfLgROcWl2qr6WuIuQNZz1nXL_b9ei3vWBc9Uz0TXlBNtwa2Uml1UuyYcoOnVWDeUVeI-4YY0IJtSHPd4eIGNNC_TJRv8VUcj2tmCHUkjCkfKRY1-lI00xvCoWfIVaYmuYrII0L5bJX-tPDL-rLUyPz3uPB05Sh-BqXJ-orxXXb-XpImL9BiYHWRP9ecwHEtcAVuZj9HuH6z7wkXz_cfbl96B4_33-8vXnsgmBWd-NoDNsKmLSZlR6tEJ7LcR6VGjQwEMF7a5kNYgjSchWsHJkQXGjtuZ8GIS_J2_PdXNL3FbC6lkKA_d4vkFZ03DI2SDEY_X-rkcIKM4ymWfnZGlpuWGB2ucSDL0fHmTu15HauteROLTkmXFMa8_7MQHv3R4TiMERYAkyxtALclOI_6N-0a5rR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732827497</pqid></control><display><type>article</type><title>Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, L. ; Nikiforov, A. ; Britun, N. ; Snyders, R. ; Leys, C.</creator><creatorcontrib>Li, L. ; Nikiforov, A. ; Britun, N. ; Snyders, R. ; Leys, C.</creatorcontrib><description>The densities of metastable and resonant states of Ar atoms are measured in high pressure Ar radio frequency discharge. Resonant absorption spectroscopy for the case of a low pressure spectral lamp and high-pressure plasma absorption lines is implemented for this purpose. The necessary generalizations for the high-pressure resonant absorption method are given. Absolute density of Ar 1s levels obtained at different RF input power and operating pressures are of the order of 1011cm−3, which is in a good agreement with those reported in the literature. The population distribution on the Ar 2p (excited) levels, obtained from the optical emission spectroscopy, reveals strong deviation from thermal equilibrium for these levels in the high-pressure case. The generation of the Ar excited states in the studied discharges is compared to the previously reported results. •Strong non-equilibrium distribution of Ar 2p levels is observed.•The absolute number density of non-radiative Ar 1s states is determined by the easier and low cost spectral-lamp absorption method.•The modified absorption theory of Mitchell and Zemanski was used to obtain the absolute number density of Ar 1s states at high pressure.•The developed RF source with 5cm long gap can be a possible alternative to micro-plasma working in Ar at atmospheric pressure.</description><identifier>ISSN: 0584-8547</identifier><identifier>EISSN: 1873-3565</identifier><identifier>DOI: 10.1016/j.sab.2015.02.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absorption spectroscopy ; Argon plasma ; Atmospheric pressure ; Atmospheric pressure RF discharge ; Density ; Deviation ; Emission analysis ; Excitation spectra ; Fabry–Perot interferometry ; Lamps ; Metastable level density ; Optical emission ; Resonant optical absorption</subject><ispartof>Spectrochimica acta. Part B: Atomic spectroscopy, 2015-05, Vol.107, p.75-85</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2086-99770b2ed67f569822a139f95546e0e2caa8808c24c3815c8390221266a1ad423</citedby><cites>FETCH-LOGICAL-c2086-99770b2ed67f569822a139f95546e0e2caa8808c24c3815c8390221266a1ad423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sab.2015.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Nikiforov, A.</creatorcontrib><creatorcontrib>Britun, N.</creatorcontrib><creatorcontrib>Snyders, R.</creatorcontrib><creatorcontrib>Leys, C.</creatorcontrib><title>Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure</title><title>Spectrochimica acta. Part B: Atomic spectroscopy</title><description>The densities of metastable and resonant states of Ar atoms are measured in high pressure Ar radio frequency discharge. Resonant absorption spectroscopy for the case of a low pressure spectral lamp and high-pressure plasma absorption lines is implemented for this purpose. The necessary generalizations for the high-pressure resonant absorption method are given. Absolute density of Ar 1s levels obtained at different RF input power and operating pressures are of the order of 1011cm−3, which is in a good agreement with those reported in the literature. The population distribution on the Ar 2p (excited) levels, obtained from the optical emission spectroscopy, reveals strong deviation from thermal equilibrium for these levels in the high-pressure case. The generation of the Ar excited states in the studied discharges is compared to the previously reported results. •Strong non-equilibrium distribution of Ar 2p levels is observed.•The absolute number density of non-radiative Ar 1s states is determined by the easier and low cost spectral-lamp absorption method.•The modified absorption theory of Mitchell and Zemanski was used to obtain the absolute number density of Ar 1s states at high pressure.•The developed RF source with 5cm long gap can be a possible alternative to micro-plasma working in Ar at atmospheric pressure.</description><subject>Absorption spectroscopy</subject><subject>Argon plasma</subject><subject>Atmospheric pressure</subject><subject>Atmospheric pressure RF discharge</subject><subject>Density</subject><subject>Deviation</subject><subject>Emission analysis</subject><subject>Excitation spectra</subject><subject>Fabry–Perot interferometry</subject><subject>Lamps</subject><subject>Metastable level density</subject><subject>Optical emission</subject><subject>Resonant optical absorption</subject><issn>0584-8547</issn><issn>1873-3565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uFDEQhC1EJJYkD8DNRy4z-Gf8M-IURSFBCuICZ8vr6Qle7Y6N24NY3iHvjFfLgROcWl2qr6WuIuQNZz1nXL_b9ei3vWBc9Uz0TXlBNtwa2Uml1UuyYcoOnVWDeUVeI-4YY0IJtSHPd4eIGNNC_TJRv8VUcj2tmCHUkjCkfKRY1-lI00xvCoWfIVaYmuYrII0L5bJX-tPDL-rLUyPz3uPB05Sh-BqXJ-orxXXb-XpImL9BiYHWRP9ecwHEtcAVuZj9HuH6z7wkXz_cfbl96B4_33-8vXnsgmBWd-NoDNsKmLSZlR6tEJ7LcR6VGjQwEMF7a5kNYgjSchWsHJkQXGjtuZ8GIS_J2_PdXNL3FbC6lkKA_d4vkFZ03DI2SDEY_X-rkcIKM4ymWfnZGlpuWGB2ucSDL0fHmTu15HauteROLTkmXFMa8_7MQHv3R4TiMERYAkyxtALclOI_6N-0a5rR</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Li, L.</creator><creator>Nikiforov, A.</creator><creator>Britun, N.</creator><creator>Snyders, R.</creator><creator>Leys, C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150501</creationdate><title>Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure</title><author>Li, L. ; Nikiforov, A. ; Britun, N. ; Snyders, R. ; Leys, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2086-99770b2ed67f569822a139f95546e0e2caa8808c24c3815c8390221266a1ad423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Absorption spectroscopy</topic><topic>Argon plasma</topic><topic>Atmospheric pressure</topic><topic>Atmospheric pressure RF discharge</topic><topic>Density</topic><topic>Deviation</topic><topic>Emission analysis</topic><topic>Excitation spectra</topic><topic>Fabry–Perot interferometry</topic><topic>Lamps</topic><topic>Metastable level density</topic><topic>Optical emission</topic><topic>Resonant optical absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Nikiforov, A.</creatorcontrib><creatorcontrib>Britun, N.</creatorcontrib><creatorcontrib>Snyders, R.</creatorcontrib><creatorcontrib>Leys, C.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, L.</au><au>Nikiforov, A.</au><au>Britun, N.</au><au>Snyders, R.</au><au>Leys, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure</atitle><jtitle>Spectrochimica acta. Part B: Atomic spectroscopy</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>107</volume><spage>75</spage><epage>85</epage><pages>75-85</pages><issn>0584-8547</issn><eissn>1873-3565</eissn><abstract>The densities of metastable and resonant states of Ar atoms are measured in high pressure Ar radio frequency discharge. Resonant absorption spectroscopy for the case of a low pressure spectral lamp and high-pressure plasma absorption lines is implemented for this purpose. The necessary generalizations for the high-pressure resonant absorption method are given. Absolute density of Ar 1s levels obtained at different RF input power and operating pressures are of the order of 1011cm−3, which is in a good agreement with those reported in the literature. The population distribution on the Ar 2p (excited) levels, obtained from the optical emission spectroscopy, reveals strong deviation from thermal equilibrium for these levels in the high-pressure case. The generation of the Ar excited states in the studied discharges is compared to the previously reported results. •Strong non-equilibrium distribution of Ar 2p levels is observed.•The absolute number density of non-radiative Ar 1s states is determined by the easier and low cost spectral-lamp absorption method.•The modified absorption theory of Mitchell and Zemanski was used to obtain the absolute number density of Ar 1s states at high pressure.•The developed RF source with 5cm long gap can be a possible alternative to micro-plasma working in Ar at atmospheric pressure.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sab.2015.02.016</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0584-8547
ispartof Spectrochimica acta. Part B: Atomic spectroscopy, 2015-05, Vol.107, p.75-85
issn 0584-8547
1873-3565
language eng
recordid cdi_proquest_miscellaneous_1800432476
source Elsevier ScienceDirect Journals Complete
subjects Absorption spectroscopy
Argon plasma
Atmospheric pressure
Atmospheric pressure RF discharge
Density
Deviation
Emission analysis
Excitation spectra
Fabry–Perot interferometry
Lamps
Metastable level density
Optical emission
Resonant optical absorption
title Emission and absorption spectroscopy study of Ar excited states in 13.56MHz argon plasma operating at sub-atmospheric to atmospheric pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emission%20and%20absorption%20spectroscopy%20study%20of%20Ar%20excited%20states%20in%2013.56MHz%20argon%20plasma%20operating%20at%20sub-atmospheric%20to%20atmospheric%20pressure&rft.jtitle=Spectrochimica%20acta.%20Part%20B:%20Atomic%20spectroscopy&rft.au=Li,%20L.&rft.date=2015-05-01&rft.volume=107&rft.spage=75&rft.epage=85&rft.pages=75-85&rft.issn=0584-8547&rft.eissn=1873-3565&rft_id=info:doi/10.1016/j.sab.2015.02.016&rft_dat=%3Cproquest_cross%3E1800432476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732827497&rft_id=info:pmid/&rft_els_id=S0584854715000646&rfr_iscdi=true