Convective transport of boron through a brackish water reverse osmosis membrane
In this work, cross-flow filtration experiments using a brackish water reverse osmosis polyamide membrane have been performed to gather boron rejection data as function of feed concentration, pressure, pH and salinity. Increasing transmembrane pressure increases the permeation of boron indicating th...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2013-10, Vol.445, p.160-169 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | |
container_start_page | 160 |
container_title | Journal of membrane science |
container_volume | 445 |
creator | Kezia, Kezia Lee, Judy Hill, Anita J. Kentish, Sandra E. |
description | In this work, cross-flow filtration experiments using a brackish water reverse osmosis polyamide membrane have been performed to gather boron rejection data as function of feed concentration, pressure, pH and salinity. Increasing transmembrane pressure increases the permeation of boron indicating that convective flow is important. This result is in contrast to the normal assumption that solution diffusion dominates in such systems. The extended Nernst–Planck equation with a Donnan-steric partition coefficient is used to analyse the transport mechanisms of both neutral boric acid and negatively charged borate ions through the RO membrane. The contribution of surface charge is experimentally determined by streaming potential measurements and the electrokinetic surface charge density is then calculated as a function of ionic strength and pH. It is found that a 0.380nm pore radius and an effective membrane porosity of 0.05 shows good agreement with experimental data. Charge screening becomes more dominant with increasing ionic strength and this contribution is readily incorporated into the model. The study extends our understanding of the transport mechanism of boric acid and borate ions which can assist in predicting the performance of polyamide reverse osmosis membranes. It also raises questions as to the true mechanism of transport through such a membrane.
•Increasing pressure increases boron permeation, so convection is significant.•Modelled with the extended Nernst–Plank equation and Donnan-steric partition.•A membrane pore radius of 0.380nm provides a good fit to experimental data.•The model can fit boron permeation results across a wide range of pH and salinity. |
doi_str_mv | 10.1016/j.memsci.2013.05.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800431363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738813004444</els_id><sourcerecordid>1562665173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-36437147266b83bdbb580fcfdb1a525ce0e04a60c66592eb78ed53264e20f6193</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVJIJs0_yBQXQK92B1J1sdeAmVJ2kAghyZnIcvjrLZrayt5t-TfR4tDj81pLs-88_IMIVcMagZMfdvUAw7Zh5oDEzXIGhr2iSyY0aISjIsTsgChVaWFMWfkPOcNANNglgvyuIrjAf0UDkin5Ma8i2misadtTHGk0zrF_cuaOtom53-HvKZ_3YSJJjxgykhjHmIOmZYChRjxMznt3Tbj5fu8IM93t0-rn9XD44_71feHyku-nCqhGqFZo7lSrRFt17bSQO_7rmVOcukREBqnwCsllxxbbbCTgqsGOfSKLcUF-Trn7lL8s8c82SFkj9tt6RD32TID0AgmlPgYlarUkEwf0WZGfYo5J-ztLoXBpVfLwB5V242dVdujagvSFtVl7fr9gsvebfsiwof8b5drJQzwpnBfZq530bqXVJjnXyVIAYCRYI5JNzOBxd0hYLLlFo4eu5DKl2wXw_-rvAEfp58O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562665173</pqid></control><display><type>article</type><title>Convective transport of boron through a brackish water reverse osmosis membrane</title><source>Elsevier ScienceDirect Journals</source><creator>Kezia, Kezia ; Lee, Judy ; Hill, Anita J. ; Kentish, Sandra E.</creator><creatorcontrib>Kezia, Kezia ; Lee, Judy ; Hill, Anita J. ; Kentish, Sandra E.</creatorcontrib><description>In this work, cross-flow filtration experiments using a brackish water reverse osmosis polyamide membrane have been performed to gather boron rejection data as function of feed concentration, pressure, pH and salinity. Increasing transmembrane pressure increases the permeation of boron indicating that convective flow is important. This result is in contrast to the normal assumption that solution diffusion dominates in such systems. The extended Nernst–Planck equation with a Donnan-steric partition coefficient is used to analyse the transport mechanisms of both neutral boric acid and negatively charged borate ions through the RO membrane. The contribution of surface charge is experimentally determined by streaming potential measurements and the electrokinetic surface charge density is then calculated as a function of ionic strength and pH. It is found that a 0.380nm pore radius and an effective membrane porosity of 0.05 shows good agreement with experimental data. Charge screening becomes more dominant with increasing ionic strength and this contribution is readily incorporated into the model. The study extends our understanding of the transport mechanism of boric acid and borate ions which can assist in predicting the performance of polyamide reverse osmosis membranes. It also raises questions as to the true mechanism of transport through such a membrane.
•Increasing pressure increases boron permeation, so convection is significant.•Modelled with the extended Nernst–Plank equation and Donnan-steric partition.•A membrane pore radius of 0.380nm provides a good fit to experimental data.•The model can fit boron permeation results across a wide range of pH and salinity.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2013.05.041</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; artificial membranes ; boric acid ; Boron ; Brackish ; Brackish water ; Chemistry ; Colloidal state and disperse state ; Donnan potential ; equations ; Exact sciences and technology ; Exchange resins and membranes ; filtration ; Forms of application and semi-finished materials ; General and physical chemistry ; ionic strength ; ions ; Mathematical models ; Membranes ; Nernst–Planck ; Polyamide resins ; polyamides ; Polymer industry, paints, wood ; porosity ; prediction ; Reverse osmosis ; salinity ; screening ; Surface charge density ; Technology of polymers ; Transport</subject><ispartof>Journal of membrane science, 2013-10, Vol.445, p.160-169</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-36437147266b83bdbb580fcfdb1a525ce0e04a60c66592eb78ed53264e20f6193</citedby><cites>FETCH-LOGICAL-c529t-36437147266b83bdbb580fcfdb1a525ce0e04a60c66592eb78ed53264e20f6193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0376738813004444$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27638024$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kezia, Kezia</creatorcontrib><creatorcontrib>Lee, Judy</creatorcontrib><creatorcontrib>Hill, Anita J.</creatorcontrib><creatorcontrib>Kentish, Sandra E.</creatorcontrib><title>Convective transport of boron through a brackish water reverse osmosis membrane</title><title>Journal of membrane science</title><description>In this work, cross-flow filtration experiments using a brackish water reverse osmosis polyamide membrane have been performed to gather boron rejection data as function of feed concentration, pressure, pH and salinity. Increasing transmembrane pressure increases the permeation of boron indicating that convective flow is important. This result is in contrast to the normal assumption that solution diffusion dominates in such systems. The extended Nernst–Planck equation with a Donnan-steric partition coefficient is used to analyse the transport mechanisms of both neutral boric acid and negatively charged borate ions through the RO membrane. The contribution of surface charge is experimentally determined by streaming potential measurements and the electrokinetic surface charge density is then calculated as a function of ionic strength and pH. It is found that a 0.380nm pore radius and an effective membrane porosity of 0.05 shows good agreement with experimental data. Charge screening becomes more dominant with increasing ionic strength and this contribution is readily incorporated into the model. The study extends our understanding of the transport mechanism of boric acid and borate ions which can assist in predicting the performance of polyamide reverse osmosis membranes. It also raises questions as to the true mechanism of transport through such a membrane.
•Increasing pressure increases boron permeation, so convection is significant.•Modelled with the extended Nernst–Plank equation and Donnan-steric partition.•A membrane pore radius of 0.380nm provides a good fit to experimental data.•The model can fit boron permeation results across a wide range of pH and salinity.</description><subject>Applied sciences</subject><subject>artificial membranes</subject><subject>boric acid</subject><subject>Boron</subject><subject>Brackish</subject><subject>Brackish water</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Donnan potential</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>filtration</subject><subject>Forms of application and semi-finished materials</subject><subject>General and physical chemistry</subject><subject>ionic strength</subject><subject>ions</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Nernst–Planck</subject><subject>Polyamide resins</subject><subject>polyamides</subject><subject>Polymer industry, paints, wood</subject><subject>porosity</subject><subject>prediction</subject><subject>Reverse osmosis</subject><subject>salinity</subject><subject>screening</subject><subject>Surface charge density</subject><subject>Technology of polymers</subject><subject>Transport</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVJIJs0_yBQXQK92B1J1sdeAmVJ2kAghyZnIcvjrLZrayt5t-TfR4tDj81pLs-88_IMIVcMagZMfdvUAw7Zh5oDEzXIGhr2iSyY0aISjIsTsgChVaWFMWfkPOcNANNglgvyuIrjAf0UDkin5Ma8i2misadtTHGk0zrF_cuaOtom53-HvKZ_3YSJJjxgykhjHmIOmZYChRjxMznt3Tbj5fu8IM93t0-rn9XD44_71feHyku-nCqhGqFZo7lSrRFt17bSQO_7rmVOcukREBqnwCsllxxbbbCTgqsGOfSKLcUF-Trn7lL8s8c82SFkj9tt6RD32TID0AgmlPgYlarUkEwf0WZGfYo5J-ztLoXBpVfLwB5V242dVdujagvSFtVl7fr9gsvebfsiwof8b5drJQzwpnBfZq530bqXVJjnXyVIAYCRYI5JNzOBxd0hYLLlFo4eu5DKl2wXw_-rvAEfp58O</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Kezia, Kezia</creator><creator>Lee, Judy</creator><creator>Hill, Anita J.</creator><creator>Kentish, Sandra E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131001</creationdate><title>Convective transport of boron through a brackish water reverse osmosis membrane</title><author>Kezia, Kezia ; Lee, Judy ; Hill, Anita J. ; Kentish, Sandra E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-36437147266b83bdbb580fcfdb1a525ce0e04a60c66592eb78ed53264e20f6193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>artificial membranes</topic><topic>boric acid</topic><topic>Boron</topic><topic>Brackish</topic><topic>Brackish water</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Donnan potential</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>filtration</topic><topic>Forms of application and semi-finished materials</topic><topic>General and physical chemistry</topic><topic>ionic strength</topic><topic>ions</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Nernst–Planck</topic><topic>Polyamide resins</topic><topic>polyamides</topic><topic>Polymer industry, paints, wood</topic><topic>porosity</topic><topic>prediction</topic><topic>Reverse osmosis</topic><topic>salinity</topic><topic>screening</topic><topic>Surface charge density</topic><topic>Technology of polymers</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kezia, Kezia</creatorcontrib><creatorcontrib>Lee, Judy</creatorcontrib><creatorcontrib>Hill, Anita J.</creatorcontrib><creatorcontrib>Kentish, Sandra E.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kezia, Kezia</au><au>Lee, Judy</au><au>Hill, Anita J.</au><au>Kentish, Sandra E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convective transport of boron through a brackish water reverse osmosis membrane</atitle><jtitle>Journal of membrane science</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>445</volume><spage>160</spage><epage>169</epage><pages>160-169</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>In this work, cross-flow filtration experiments using a brackish water reverse osmosis polyamide membrane have been performed to gather boron rejection data as function of feed concentration, pressure, pH and salinity. Increasing transmembrane pressure increases the permeation of boron indicating that convective flow is important. This result is in contrast to the normal assumption that solution diffusion dominates in such systems. The extended Nernst–Planck equation with a Donnan-steric partition coefficient is used to analyse the transport mechanisms of both neutral boric acid and negatively charged borate ions through the RO membrane. The contribution of surface charge is experimentally determined by streaming potential measurements and the electrokinetic surface charge density is then calculated as a function of ionic strength and pH. It is found that a 0.380nm pore radius and an effective membrane porosity of 0.05 shows good agreement with experimental data. Charge screening becomes more dominant with increasing ionic strength and this contribution is readily incorporated into the model. The study extends our understanding of the transport mechanism of boric acid and borate ions which can assist in predicting the performance of polyamide reverse osmosis membranes. It also raises questions as to the true mechanism of transport through such a membrane.
•Increasing pressure increases boron permeation, so convection is significant.•Modelled with the extended Nernst–Plank equation and Donnan-steric partition.•A membrane pore radius of 0.380nm provides a good fit to experimental data.•The model can fit boron permeation results across a wide range of pH and salinity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2013.05.041</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-7388 |
ispartof | Journal of membrane science, 2013-10, Vol.445, p.160-169 |
issn | 0376-7388 1873-3123 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800431363 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences artificial membranes boric acid Boron Brackish Brackish water Chemistry Colloidal state and disperse state Donnan potential equations Exact sciences and technology Exchange resins and membranes filtration Forms of application and semi-finished materials General and physical chemistry ionic strength ions Mathematical models Membranes Nernst–Planck Polyamide resins polyamides Polymer industry, paints, wood porosity prediction Reverse osmosis salinity screening Surface charge density Technology of polymers Transport |
title | Convective transport of boron through a brackish water reverse osmosis membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convective%20transport%20of%20boron%20through%20a%20brackish%20water%20reverse%20osmosis%20membrane&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Kezia,%20Kezia&rft.date=2013-10-01&rft.volume=445&rft.spage=160&rft.epage=169&rft.pages=160-169&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2013.05.041&rft_dat=%3Cproquest_cross%3E1562665173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562665173&rft_id=info:pmid/&rft_els_id=S0376738813004444&rfr_iscdi=true |