Determination of the average volumetric flow rate in supercritical fluid chromatography

•The average volumetric flow rate of a compressible mobile phase along a column is determined.•Estimates of the variations of pressure and temperature along the column are discussed.•This determination is based on knowledge of the mobile phase average density and mass flow rate.•It is key to underst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2014-04, Vol.1339, p.168-173
Hauptverfasser: Vajda, Péter, Stankovich, Joseph J., Guiochon, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 168
container_title Journal of Chromatography A
container_volume 1339
creator Vajda, Péter
Stankovich, Joseph J.
Guiochon, Georges
description •The average volumetric flow rate of a compressible mobile phase along a column is determined.•Estimates of the variations of pressure and temperature along the column are discussed.•This determination is based on knowledge of the mobile phase average density and mass flow rate.•It is key to understanding the retention mechanisms taking place inside the column.•It is validated by conversion of the retention times of nitrous oxide assumed to be non retained. This work reviews and discusses controversies and errors made in the determination of the average volumetric flow rate of a compressible mobile phase forced to flow through a chromatographic column. Proper estimates of the volumetric flow rate, which obviously changes along the column, are keys to understanding the retention mechanism that takes place inside the column and to achieve repeatable and reproducible separations. Each step of the calculation process will be discussed in detail, including how to estimate the variations of the pressure and the temperature along the column. The determination of the average volumetric flow rate requires the knowledge of the average density of the mobile phase and of its mass flow rate. The calculations were carried out under various experimental conditions, including different column temperatures and inlet pressures. The estimated values of the volumetric flow rate are validated by the conversion of the retention times to the retention volumes of nitrous oxide peaks, which is valid since this compound is assumed to be non retained, which makes it a hold-up time marker.
doi_str_mv 10.1016/j.chroma.2014.02.078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800430746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967314003501</els_id><sourcerecordid>1635023185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-ff742600ef47d1d0360d510de143e8173805ba347467cbc3f02eb5878e9b1d33</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EosPAGyDkDVI3Cdc_id0NEiqlIFXqplKXluPcdDxK4sF2BvXtcZUBdmXlxT2f7-djQt4zqBmw9tO-drsYJltzYLIGXoPSL8iGaSUqoZR-STYAnFUXrRJn5E1KewCmQPHX5IzLVjGQfEPuv2LGOPnZZh9mGgaad0jtEaN9QHoM4zJhjt7RYQy_aLQZqZ9pWg4YXfTZOzuW0eJ7urbJ4SHaw-7xLXk12DHhu9O5JXffru4uv1c3t9c_Lr_cVE42OlfDoCRvAXCQqmc9iBb6hkGPTArUTAkNTWeFVKWw65wYgGPXaKXxomO9EFtyvl57iOHngimbySeH42hnDEsyTANIASX-f7QVDXDBdFNQuaIuhpQiDuYQ_WTjo2FgnuSbvVmfa57kG-CmyC-xD6cNSzdh_zf0x3YBPp4Am4q4IdrZ-fSP06Jp2vJ_W_J55bCYO3qMJjmPs8PeR3TZ9ME_3-Q30bSkVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635023185</pqid></control><display><type>article</type><title>Determination of the average volumetric flow rate in supercritical fluid chromatography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Vajda, Péter ; Stankovich, Joseph J. ; Guiochon, Georges</creator><creatorcontrib>Vajda, Péter ; Stankovich, Joseph J. ; Guiochon, Georges</creatorcontrib><description>•The average volumetric flow rate of a compressible mobile phase along a column is determined.•Estimates of the variations of pressure and temperature along the column are discussed.•This determination is based on knowledge of the mobile phase average density and mass flow rate.•It is key to understanding the retention mechanisms taking place inside the column.•It is validated by conversion of the retention times of nitrous oxide assumed to be non retained. This work reviews and discusses controversies and errors made in the determination of the average volumetric flow rate of a compressible mobile phase forced to flow through a chromatographic column. Proper estimates of the volumetric flow rate, which obviously changes along the column, are keys to understanding the retention mechanism that takes place inside the column and to achieve repeatable and reproducible separations. Each step of the calculation process will be discussed in detail, including how to estimate the variations of the pressure and the temperature along the column. The determination of the average volumetric flow rate requires the knowledge of the average density of the mobile phase and of its mass flow rate. The calculations were carried out under various experimental conditions, including different column temperatures and inlet pressures. The estimated values of the volumetric flow rate are validated by the conversion of the retention times to the retention volumes of nitrous oxide peaks, which is valid since this compound is assumed to be non retained, which makes it a hold-up time marker.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2014.02.078</identifier><identifier>PMID: 24671042</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Average volumetric flow rate ; Carbon Dioxide ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Chromatography, Supercritical Fluid - methods ; Columns (process) ; Density ; Estimates ; Exact sciences and technology ; Flow rate ; Hold-up volume ; Inlet pressure ; Markers ; Mathematical analysis ; Nitrous Oxide ; Other chromatographic methods ; Pressure ; Supercritical fluid chromatography ; Temperature</subject><ispartof>Journal of Chromatography A, 2014-04, Vol.1339, p.168-173</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-ff742600ef47d1d0360d510de143e8173805ba347467cbc3f02eb5878e9b1d33</citedby><cites>FETCH-LOGICAL-c458t-ff742600ef47d1d0360d510de143e8173805ba347467cbc3f02eb5878e9b1d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chroma.2014.02.078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28355687$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24671042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vajda, Péter</creatorcontrib><creatorcontrib>Stankovich, Joseph J.</creatorcontrib><creatorcontrib>Guiochon, Georges</creatorcontrib><title>Determination of the average volumetric flow rate in supercritical fluid chromatography</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>•The average volumetric flow rate of a compressible mobile phase along a column is determined.•Estimates of the variations of pressure and temperature along the column are discussed.•This determination is based on knowledge of the mobile phase average density and mass flow rate.•It is key to understanding the retention mechanisms taking place inside the column.•It is validated by conversion of the retention times of nitrous oxide assumed to be non retained. This work reviews and discusses controversies and errors made in the determination of the average volumetric flow rate of a compressible mobile phase forced to flow through a chromatographic column. Proper estimates of the volumetric flow rate, which obviously changes along the column, are keys to understanding the retention mechanism that takes place inside the column and to achieve repeatable and reproducible separations. Each step of the calculation process will be discussed in detail, including how to estimate the variations of the pressure and the temperature along the column. The determination of the average volumetric flow rate requires the knowledge of the average density of the mobile phase and of its mass flow rate. The calculations were carried out under various experimental conditions, including different column temperatures and inlet pressures. The estimated values of the volumetric flow rate are validated by the conversion of the retention times to the retention volumes of nitrous oxide peaks, which is valid since this compound is assumed to be non retained, which makes it a hold-up time marker.</description><subject>Analytical chemistry</subject><subject>Average volumetric flow rate</subject><subject>Carbon Dioxide</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Chromatography, Supercritical Fluid - methods</subject><subject>Columns (process)</subject><subject>Density</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>Hold-up volume</subject><subject>Inlet pressure</subject><subject>Markers</subject><subject>Mathematical analysis</subject><subject>Nitrous Oxide</subject><subject>Other chromatographic methods</subject><subject>Pressure</subject><subject>Supercritical fluid chromatography</subject><subject>Temperature</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAURi0EosPAGyDkDVI3Cdc_id0NEiqlIFXqplKXluPcdDxK4sF2BvXtcZUBdmXlxT2f7-djQt4zqBmw9tO-drsYJltzYLIGXoPSL8iGaSUqoZR-STYAnFUXrRJn5E1KewCmQPHX5IzLVjGQfEPuv2LGOPnZZh9mGgaad0jtEaN9QHoM4zJhjt7RYQy_aLQZqZ9pWg4YXfTZOzuW0eJ7urbJ4SHaw-7xLXk12DHhu9O5JXffru4uv1c3t9c_Lr_cVE42OlfDoCRvAXCQqmc9iBb6hkGPTArUTAkNTWeFVKWw65wYgGPXaKXxomO9EFtyvl57iOHngimbySeH42hnDEsyTANIASX-f7QVDXDBdFNQuaIuhpQiDuYQ_WTjo2FgnuSbvVmfa57kG-CmyC-xD6cNSzdh_zf0x3YBPp4Am4q4IdrZ-fSP06Jp2vJ_W_J55bCYO3qMJjmPs8PeR3TZ9ME_3-Q30bSkVw</recordid><startdate>20140425</startdate><enddate>20140425</enddate><creator>Vajda, Péter</creator><creator>Stankovich, Joseph J.</creator><creator>Guiochon, Georges</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140425</creationdate><title>Determination of the average volumetric flow rate in supercritical fluid chromatography</title><author>Vajda, Péter ; Stankovich, Joseph J. ; Guiochon, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-ff742600ef47d1d0360d510de143e8173805ba347467cbc3f02eb5878e9b1d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical chemistry</topic><topic>Average volumetric flow rate</topic><topic>Carbon Dioxide</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Chromatography, Supercritical Fluid - methods</topic><topic>Columns (process)</topic><topic>Density</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>Hold-up volume</topic><topic>Inlet pressure</topic><topic>Markers</topic><topic>Mathematical analysis</topic><topic>Nitrous Oxide</topic><topic>Other chromatographic methods</topic><topic>Pressure</topic><topic>Supercritical fluid chromatography</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vajda, Péter</creatorcontrib><creatorcontrib>Stankovich, Joseph J.</creatorcontrib><creatorcontrib>Guiochon, Georges</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vajda, Péter</au><au>Stankovich, Joseph J.</au><au>Guiochon, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the average volumetric flow rate in supercritical fluid chromatography</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2014-04-25</date><risdate>2014</risdate><volume>1339</volume><spage>168</spage><epage>173</epage><pages>168-173</pages><issn>0021-9673</issn><eissn>1873-3778</eissn><coden>JOCRAM</coden><abstract>•The average volumetric flow rate of a compressible mobile phase along a column is determined.•Estimates of the variations of pressure and temperature along the column are discussed.•This determination is based on knowledge of the mobile phase average density and mass flow rate.•It is key to understanding the retention mechanisms taking place inside the column.•It is validated by conversion of the retention times of nitrous oxide assumed to be non retained. This work reviews and discusses controversies and errors made in the determination of the average volumetric flow rate of a compressible mobile phase forced to flow through a chromatographic column. Proper estimates of the volumetric flow rate, which obviously changes along the column, are keys to understanding the retention mechanism that takes place inside the column and to achieve repeatable and reproducible separations. Each step of the calculation process will be discussed in detail, including how to estimate the variations of the pressure and the temperature along the column. The determination of the average volumetric flow rate requires the knowledge of the average density of the mobile phase and of its mass flow rate. The calculations were carried out under various experimental conditions, including different column temperatures and inlet pressures. The estimated values of the volumetric flow rate are validated by the conversion of the retention times to the retention volumes of nitrous oxide peaks, which is valid since this compound is assumed to be non retained, which makes it a hold-up time marker.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>24671042</pmid><doi>10.1016/j.chroma.2014.02.078</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 2014-04, Vol.1339, p.168-173
issn 0021-9673
1873-3778
language eng
recordid cdi_proquest_miscellaneous_1800430746
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Analytical chemistry
Average volumetric flow rate
Carbon Dioxide
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography
Chromatography, Supercritical Fluid - methods
Columns (process)
Density
Estimates
Exact sciences and technology
Flow rate
Hold-up volume
Inlet pressure
Markers
Mathematical analysis
Nitrous Oxide
Other chromatographic methods
Pressure
Supercritical fluid chromatography
Temperature
title Determination of the average volumetric flow rate in supercritical fluid chromatography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20average%20volumetric%20flow%20rate%20in%20supercritical%20fluid%20chromatography&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Vajda,%20P%C3%A9ter&rft.date=2014-04-25&rft.volume=1339&rft.spage=168&rft.epage=173&rft.pages=168-173&rft.issn=0021-9673&rft.eissn=1873-3778&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2014.02.078&rft_dat=%3Cproquest_cross%3E1635023185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635023185&rft_id=info:pmid/24671042&rft_els_id=S0021967314003501&rfr_iscdi=true