Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation

High-performance organic–inorganic hybrid silica membranes were developed for use in membrane reactors for methylcyclohexane (MCH) dehydrogenation to toluene (TOL). The membranes were prepared via sol–gel processing using bis(triethoxysilyl)ethane (BTESE). In particular, the effect of hydrolysis con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2014-04, Vol.455, p.375-383
Hauptverfasser: Niimi, Takuya, Nagasawa, Hiroki, Kanezashi, Masakoto, Yoshioka, Tomohisa, Ito, Kenji, Tsuru, Toshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue
container_start_page 375
container_title Journal of membrane science
container_volume 455
creator Niimi, Takuya
Nagasawa, Hiroki
Kanezashi, Masakoto
Yoshioka, Tomohisa
Ito, Kenji
Tsuru, Toshinori
description High-performance organic–inorganic hybrid silica membranes were developed for use in membrane reactors for methylcyclohexane (MCH) dehydrogenation to toluene (TOL). The membranes were prepared via sol–gel processing using bis(triethoxysilyl)ethane (BTESE). In particular, the effect of hydrolysis conditions (H2O/BTESE molar ratio) on membrane performance was extensively investigated. Characterization based on TG-MASS, FTIR, N2 adsorption and positron annihilation lifetime (PAL) measurements of BTESE-derived silica gels revealed that the ethoxides of BTESE were almost completely hydrolyzed and the silica networks became dense by increasing the H2O/BTESE molar ratio from 6 to 240. BTESE-derived silica membranes showed a hydrogen permeance that was higher than 1×10−6mol/(m2sPa). H2/TOL selectivity increased from 100 to 10,000 by increasing the H2O/BTESE molar ratio from 6 to 240, while keeping a hydrogen permeance of more than 1×10−6mol/(m2sPa). In MCH dehydrogenation, a BTESE-derived silica membrane reactor with a Pt/γ-Al2O3/α-Al2O3 bimodal catalytic layer achieved MCH conversion of 75% that was higher than the equilibrium conversion of 60%, and a hydrogen purity in the permeate stream of more than 99.9% at 230°C. Pore size of BTESE-derived silica membrane for a membrane reactor of methylcyclohexane dehydrogenation was tuned by H2O/BTESE molar ratio in BTESE hydrolysis and condensation. [Display omitted] •Hybrid silica membranes were prepared from bis(triethoxysilyl)ethane (BTESE).•H2 permeance higher than 1×10−6mol/ (m2sPa) with H2/toluene selectivity of 10,000.•BTESE membrane reactors were applied to methylcyclohexane (MCH) dehydrogenation.•The membrane reactors increased MCH conversion with hydrogen purity more than 99.9%.
doi_str_mv 10.1016/j.memsci.2014.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800427666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738814000088</els_id><sourcerecordid>1800427666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-bc5a6cd5f309305806c2637179274d067effa6d715697fa875f519faa3e506273</originalsourceid><addsrcrecordid>eNqFUU1r3DAUFKGFbNP-gx58KfRi90myPnwptGHbFAIJND0LRXrKarGtreSE-N_HzoYc29OD9-bNDDOEfKTQUKDyy74ZcCguNgxo2wBtAPgJ2VCteM0p42_IBriSteJan5J3pewBqALdbcjjdcaDzXaKaaxSqL7fbH9va485PqCvUr6zYyqxj85Wi8ZttiOWKqRcOTvZfp6ie91XGa2bUi4rz4DTbu7d7Pq0w8f16nE3-5zucHwWe0_eBtsX_PAyz8ifH9ub84v68urnr_Nvl7UTIKb61gkrnReBQ8dBaJCOSa6o6phqPUiFIVjpFRWyU8FqJYKgXbCWowDJFD8jn4-8h5z-3mOZzBCLw75fPKX7YqgGaJmSUv4fqgRllOkOFmh7hLqcSskYzCHHwebZUDBrJ2Zvjp2YtRMD1CydLG-fXhRscbYPS2wultdfprlgrVhNfz3icEnmIWI2CxOODn3M6CbjU_y30BNrl6Vv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751212890</pqid></control><display><type>article</type><title>Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Niimi, Takuya ; Nagasawa, Hiroki ; Kanezashi, Masakoto ; Yoshioka, Tomohisa ; Ito, Kenji ; Tsuru, Toshinori</creator><creatorcontrib>Niimi, Takuya ; Nagasawa, Hiroki ; Kanezashi, Masakoto ; Yoshioka, Tomohisa ; Ito, Kenji ; Tsuru, Toshinori</creatorcontrib><description>High-performance organic–inorganic hybrid silica membranes were developed for use in membrane reactors for methylcyclohexane (MCH) dehydrogenation to toluene (TOL). The membranes were prepared via sol–gel processing using bis(triethoxysilyl)ethane (BTESE). In particular, the effect of hydrolysis conditions (H2O/BTESE molar ratio) on membrane performance was extensively investigated. Characterization based on TG-MASS, FTIR, N2 adsorption and positron annihilation lifetime (PAL) measurements of BTESE-derived silica gels revealed that the ethoxides of BTESE were almost completely hydrolyzed and the silica networks became dense by increasing the H2O/BTESE molar ratio from 6 to 240. BTESE-derived silica membranes showed a hydrogen permeance that was higher than 1×10−6mol/(m2sPa). H2/TOL selectivity increased from 100 to 10,000 by increasing the H2O/BTESE molar ratio from 6 to 240, while keeping a hydrogen permeance of more than 1×10−6mol/(m2sPa). In MCH dehydrogenation, a BTESE-derived silica membrane reactor with a Pt/γ-Al2O3/α-Al2O3 bimodal catalytic layer achieved MCH conversion of 75% that was higher than the equilibrium conversion of 60%, and a hydrogen purity in the permeate stream of more than 99.9% at 230°C. Pore size of BTESE-derived silica membrane for a membrane reactor of methylcyclohexane dehydrogenation was tuned by H2O/BTESE molar ratio in BTESE hydrolysis and condensation. [Display omitted] •Hybrid silica membranes were prepared from bis(triethoxysilyl)ethane (BTESE).•H2 permeance higher than 1×10−6mol/ (m2sPa) with H2/toluene selectivity of 10,000.•BTESE membrane reactors were applied to methylcyclohexane (MCH) dehydrogenation.•The membrane reactors increased MCH conversion with hydrogen purity more than 99.9%.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2014.01.003</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bis(triethoxysilyl)ethane (BTESE) ; Chemistry ; Colloidal state and disperse state ; Dehydrogenation ; Exact sciences and technology ; General and physical chemistry ; Hydrogen storage ; Membrane reactor ; Membranes ; Methylcyclohexane ; Reactors ; Reluctance ; Silica ; Silicon dioxide ; Toluene</subject><ispartof>Journal of membrane science, 2014-04, Vol.455, p.375-383</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-bc5a6cd5f309305806c2637179274d067effa6d715697fa875f519faa3e506273</citedby><cites>FETCH-LOGICAL-c505t-bc5a6cd5f309305806c2637179274d067effa6d715697fa875f519faa3e506273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.memsci.2014.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28352457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Niimi, Takuya</creatorcontrib><creatorcontrib>Nagasawa, Hiroki</creatorcontrib><creatorcontrib>Kanezashi, Masakoto</creatorcontrib><creatorcontrib>Yoshioka, Tomohisa</creatorcontrib><creatorcontrib>Ito, Kenji</creatorcontrib><creatorcontrib>Tsuru, Toshinori</creatorcontrib><title>Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation</title><title>Journal of membrane science</title><description>High-performance organic–inorganic hybrid silica membranes were developed for use in membrane reactors for methylcyclohexane (MCH) dehydrogenation to toluene (TOL). The membranes were prepared via sol–gel processing using bis(triethoxysilyl)ethane (BTESE). In particular, the effect of hydrolysis conditions (H2O/BTESE molar ratio) on membrane performance was extensively investigated. Characterization based on TG-MASS, FTIR, N2 adsorption and positron annihilation lifetime (PAL) measurements of BTESE-derived silica gels revealed that the ethoxides of BTESE were almost completely hydrolyzed and the silica networks became dense by increasing the H2O/BTESE molar ratio from 6 to 240. BTESE-derived silica membranes showed a hydrogen permeance that was higher than 1×10−6mol/(m2sPa). H2/TOL selectivity increased from 100 to 10,000 by increasing the H2O/BTESE molar ratio from 6 to 240, while keeping a hydrogen permeance of more than 1×10−6mol/(m2sPa). In MCH dehydrogenation, a BTESE-derived silica membrane reactor with a Pt/γ-Al2O3/α-Al2O3 bimodal catalytic layer achieved MCH conversion of 75% that was higher than the equilibrium conversion of 60%, and a hydrogen purity in the permeate stream of more than 99.9% at 230°C. Pore size of BTESE-derived silica membrane for a membrane reactor of methylcyclohexane dehydrogenation was tuned by H2O/BTESE molar ratio in BTESE hydrolysis and condensation. [Display omitted] •Hybrid silica membranes were prepared from bis(triethoxysilyl)ethane (BTESE).•H2 permeance higher than 1×10−6mol/ (m2sPa) with H2/toluene selectivity of 10,000.•BTESE membrane reactors were applied to methylcyclohexane (MCH) dehydrogenation.•The membrane reactors increased MCH conversion with hydrogen purity more than 99.9%.</description><subject>Bis(triethoxysilyl)ethane (BTESE)</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Dehydrogenation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen storage</subject><subject>Membrane reactor</subject><subject>Membranes</subject><subject>Methylcyclohexane</subject><subject>Reactors</subject><subject>Reluctance</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Toluene</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAUFKGFbNP-gx58KfRi90myPnwptGHbFAIJND0LRXrKarGtreSE-N_HzoYc29OD9-bNDDOEfKTQUKDyy74ZcCguNgxo2wBtAPgJ2VCteM0p42_IBriSteJan5J3pewBqALdbcjjdcaDzXaKaaxSqL7fbH9va485PqCvUr6zYyqxj85Wi8ZttiOWKqRcOTvZfp6ie91XGa2bUi4rz4DTbu7d7Pq0w8f16nE3-5zucHwWe0_eBtsX_PAyz8ifH9ub84v68urnr_Nvl7UTIKb61gkrnReBQ8dBaJCOSa6o6phqPUiFIVjpFRWyU8FqJYKgXbCWowDJFD8jn4-8h5z-3mOZzBCLw75fPKX7YqgGaJmSUv4fqgRllOkOFmh7hLqcSskYzCHHwebZUDBrJ2Zvjp2YtRMD1CydLG-fXhRscbYPS2wultdfprlgrVhNfz3icEnmIWI2CxOODn3M6CbjU_y30BNrl6Vv</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Niimi, Takuya</creator><creator>Nagasawa, Hiroki</creator><creator>Kanezashi, Masakoto</creator><creator>Yoshioka, Tomohisa</creator><creator>Ito, Kenji</creator><creator>Tsuru, Toshinori</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140401</creationdate><title>Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation</title><author>Niimi, Takuya ; Nagasawa, Hiroki ; Kanezashi, Masakoto ; Yoshioka, Tomohisa ; Ito, Kenji ; Tsuru, Toshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-bc5a6cd5f309305806c2637179274d067effa6d715697fa875f519faa3e506273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bis(triethoxysilyl)ethane (BTESE)</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Dehydrogenation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen storage</topic><topic>Membrane reactor</topic><topic>Membranes</topic><topic>Methylcyclohexane</topic><topic>Reactors</topic><topic>Reluctance</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niimi, Takuya</creatorcontrib><creatorcontrib>Nagasawa, Hiroki</creatorcontrib><creatorcontrib>Kanezashi, Masakoto</creatorcontrib><creatorcontrib>Yoshioka, Tomohisa</creatorcontrib><creatorcontrib>Ito, Kenji</creatorcontrib><creatorcontrib>Tsuru, Toshinori</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niimi, Takuya</au><au>Nagasawa, Hiroki</au><au>Kanezashi, Masakoto</au><au>Yoshioka, Tomohisa</au><au>Ito, Kenji</au><au>Tsuru, Toshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation</atitle><jtitle>Journal of membrane science</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>455</volume><spage>375</spage><epage>383</epage><pages>375-383</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>High-performance organic–inorganic hybrid silica membranes were developed for use in membrane reactors for methylcyclohexane (MCH) dehydrogenation to toluene (TOL). The membranes were prepared via sol–gel processing using bis(triethoxysilyl)ethane (BTESE). In particular, the effect of hydrolysis conditions (H2O/BTESE molar ratio) on membrane performance was extensively investigated. Characterization based on TG-MASS, FTIR, N2 adsorption and positron annihilation lifetime (PAL) measurements of BTESE-derived silica gels revealed that the ethoxides of BTESE were almost completely hydrolyzed and the silica networks became dense by increasing the H2O/BTESE molar ratio from 6 to 240. BTESE-derived silica membranes showed a hydrogen permeance that was higher than 1×10−6mol/(m2sPa). H2/TOL selectivity increased from 100 to 10,000 by increasing the H2O/BTESE molar ratio from 6 to 240, while keeping a hydrogen permeance of more than 1×10−6mol/(m2sPa). In MCH dehydrogenation, a BTESE-derived silica membrane reactor with a Pt/γ-Al2O3/α-Al2O3 bimodal catalytic layer achieved MCH conversion of 75% that was higher than the equilibrium conversion of 60%, and a hydrogen purity in the permeate stream of more than 99.9% at 230°C. Pore size of BTESE-derived silica membrane for a membrane reactor of methylcyclohexane dehydrogenation was tuned by H2O/BTESE molar ratio in BTESE hydrolysis and condensation. [Display omitted] •Hybrid silica membranes were prepared from bis(triethoxysilyl)ethane (BTESE).•H2 permeance higher than 1×10−6mol/ (m2sPa) with H2/toluene selectivity of 10,000.•BTESE membrane reactors were applied to methylcyclohexane (MCH) dehydrogenation.•The membrane reactors increased MCH conversion with hydrogen purity more than 99.9%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2014.01.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2014-04, Vol.455, p.375-383
issn 0376-7388
1873-3123
language eng
recordid cdi_proquest_miscellaneous_1800427666
source Elsevier ScienceDirect Journals Complete
subjects Bis(triethoxysilyl)ethane (BTESE)
Chemistry
Colloidal state and disperse state
Dehydrogenation
Exact sciences and technology
General and physical chemistry
Hydrogen storage
Membrane reactor
Membranes
Methylcyclohexane
Reactors
Reluctance
Silica
Silicon dioxide
Toluene
title Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20BTESE-derived%20organosilica%20membranes%20for%20catalytic%20membrane%20reactors%20of%20methylcyclohexane%20dehydrogenation&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Niimi,%20Takuya&rft.date=2014-04-01&rft.volume=455&rft.spage=375&rft.epage=383&rft.pages=375-383&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2014.01.003&rft_dat=%3Cproquest_cross%3E1800427666%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751212890&rft_id=info:pmid/&rft_els_id=S0376738814000088&rfr_iscdi=true