Propulsion of Porous Plates in Thin Atmospheres by Temperature Fields: Experiments on Parabolic Flights
In low pressure environments macroscopic bodies can be subject to photo- and thermophoretic motion if temperature gradients are present. Porosity can increase the efficiency of this propulsion. We developed a setup to generate a temperature field and measure phoretic accelerations in a parabolic fli...
Gespeichert in:
Veröffentlicht in: | Microgravity science and technology 2014-02, Vol.25 (5), p.311-318 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 5 |
container_start_page | 311 |
container_title | Microgravity science and technology |
container_volume | 25 |
creator | Küpper, M. Dürmann, C. de Beule, C. Wurm, G. |
description | In low pressure environments macroscopic bodies can be subject to photo- and thermophoretic motion if temperature gradients are present. Porosity can increase the efficiency of this propulsion. We developed a setup to generate a temperature field and measure phoretic accelerations in a parabolic flight. In a first campaign we studied the pressure dependence of the acceleration for thin plates (1.7 mm thickness, 2.2 and 3.5 cm diameter) consisting of sintered glass spheres of a size range of 150 to 250
μ
m and 40 to 70
μ
m. We find evidence for two characteristic propulsion maxima at pressures related to the overall size of the plate as well as the bead (pore) size. The increase of the magnitude of acceleration due to the porosity is on the order of 10
−2
g for the specific samples. This force is comparable to the phoretic force attributed to the overall size of the plate. |
doi_str_mv | 10.1007/s12217-014-9357-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800426367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3229387241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2161-46a4952a35108db6125b537ee63f48dd04e7a1f2906253e8f6b7d44397284b5b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeAFy_Rnf2bHEtpVSjYQz0vm2ZiU5Js3E0O_fZuiQcRvMzAzO89Ho-Qe6BPQKl-DsAY6JSCSHMudQoXZAaZlikVubgkM5rzLH5pdk1uQjhSqhgINiOrrXf92ITadYmrkq3zbgzJtrEDhqTukt0hjsXQutAf0MdbcUp22Pbo7TB6TNY1NmW4JVeVbQLe_ew5-VivdsvXdPP-8rZcbNI9AwWpUFbkklkuY5CyUMBkIblGVLwSWVlSgdpCxfKYTnLMKlXoUgiea5aJQhZ8Th4n3967rxHDYNo67LFpbIcxt4GMUsEUVzqiD3_Qoxt9F9MZkDSCgmoZKZiovXcheKxM7-vW-pMBas7FmqlYE4s152INRA2bNCGy3Sf6X87_ir4B4-t4nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501804075</pqid></control><display><type>article</type><title>Propulsion of Porous Plates in Thin Atmospheres by Temperature Fields: Experiments on Parabolic Flights</title><source>Springer Nature - Complete Springer Journals</source><creator>Küpper, M. ; Dürmann, C. ; de Beule, C. ; Wurm, G.</creator><creatorcontrib>Küpper, M. ; Dürmann, C. ; de Beule, C. ; Wurm, G.</creatorcontrib><description>In low pressure environments macroscopic bodies can be subject to photo- and thermophoretic motion if temperature gradients are present. Porosity can increase the efficiency of this propulsion. We developed a setup to generate a temperature field and measure phoretic accelerations in a parabolic flight. In a first campaign we studied the pressure dependence of the acceleration for thin plates (1.7 mm thickness, 2.2 and 3.5 cm diameter) consisting of sintered glass spheres of a size range of 150 to 250
μ
m and 40 to 70
μ
m. We find evidence for two characteristic propulsion maxima at pressures related to the overall size of the plate as well as the bead (pore) size. The increase of the magnitude of acceleration due to the porosity is on the order of 10
−2
g for the specific samples. This force is comparable to the phoretic force attributed to the overall size of the plate.</description><identifier>ISSN: 0938-0108</identifier><identifier>EISSN: 1875-0494</identifier><identifier>DOI: 10.1007/s12217-014-9357-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration ; Aerospace Technology and Astronautics ; Beads ; Classical and Continuum Physics ; Engineering ; Low pressure ; Original Article ; Parabolic flight ; Porosity ; Propulsion ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Temperature distribution ; Temperature gradients ; Thin plates</subject><ispartof>Microgravity science and technology, 2014-02, Vol.25 (5), p.311-318</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2161-46a4952a35108db6125b537ee63f48dd04e7a1f2906253e8f6b7d44397284b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12217-014-9357-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12217-014-9357-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Küpper, M.</creatorcontrib><creatorcontrib>Dürmann, C.</creatorcontrib><creatorcontrib>de Beule, C.</creatorcontrib><creatorcontrib>Wurm, G.</creatorcontrib><title>Propulsion of Porous Plates in Thin Atmospheres by Temperature Fields: Experiments on Parabolic Flights</title><title>Microgravity science and technology</title><addtitle>Microgravity Sci. Technol</addtitle><description>In low pressure environments macroscopic bodies can be subject to photo- and thermophoretic motion if temperature gradients are present. Porosity can increase the efficiency of this propulsion. We developed a setup to generate a temperature field and measure phoretic accelerations in a parabolic flight. In a first campaign we studied the pressure dependence of the acceleration for thin plates (1.7 mm thickness, 2.2 and 3.5 cm diameter) consisting of sintered glass spheres of a size range of 150 to 250
μ
m and 40 to 70
μ
m. We find evidence for two characteristic propulsion maxima at pressures related to the overall size of the plate as well as the bead (pore) size. The increase of the magnitude of acceleration due to the porosity is on the order of 10
−2
g for the specific samples. This force is comparable to the phoretic force attributed to the overall size of the plate.</description><subject>Acceleration</subject><subject>Aerospace Technology and Astronautics</subject><subject>Beads</subject><subject>Classical and Continuum Physics</subject><subject>Engineering</subject><subject>Low pressure</subject><subject>Original Article</subject><subject>Parabolic flight</subject><subject>Porosity</subject><subject>Propulsion</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Thin plates</subject><issn>0938-0108</issn><issn>1875-0494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9Lw0AQxRdRsFY_gLeAFy_Rnf2bHEtpVSjYQz0vm2ZiU5Js3E0O_fZuiQcRvMzAzO89Ho-Qe6BPQKl-DsAY6JSCSHMudQoXZAaZlikVubgkM5rzLH5pdk1uQjhSqhgINiOrrXf92ITadYmrkq3zbgzJtrEDhqTukt0hjsXQutAf0MdbcUp22Pbo7TB6TNY1NmW4JVeVbQLe_ew5-VivdsvXdPP-8rZcbNI9AwWpUFbkklkuY5CyUMBkIblGVLwSWVlSgdpCxfKYTnLMKlXoUgiea5aJQhZ8Th4n3967rxHDYNo67LFpbIcxt4GMUsEUVzqiD3_Qoxt9F9MZkDSCgmoZKZiovXcheKxM7-vW-pMBas7FmqlYE4s152INRA2bNCGy3Sf6X87_ir4B4-t4nw</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Küpper, M.</creator><creator>Dürmann, C.</creator><creator>de Beule, C.</creator><creator>Wurm, G.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7TG</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L7M</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140201</creationdate><title>Propulsion of Porous Plates in Thin Atmospheres by Temperature Fields</title><author>Küpper, M. ; Dürmann, C. ; de Beule, C. ; Wurm, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2161-46a4952a35108db6125b537ee63f48dd04e7a1f2906253e8f6b7d44397284b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Aerospace Technology and Astronautics</topic><topic>Beads</topic><topic>Classical and Continuum Physics</topic><topic>Engineering</topic><topic>Low pressure</topic><topic>Original Article</topic><topic>Parabolic flight</topic><topic>Porosity</topic><topic>Propulsion</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Thin plates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küpper, M.</creatorcontrib><creatorcontrib>Dürmann, C.</creatorcontrib><creatorcontrib>de Beule, C.</creatorcontrib><creatorcontrib>Wurm, G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Microgravity science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küpper, M.</au><au>Dürmann, C.</au><au>de Beule, C.</au><au>Wurm, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propulsion of Porous Plates in Thin Atmospheres by Temperature Fields: Experiments on Parabolic Flights</atitle><jtitle>Microgravity science and technology</jtitle><stitle>Microgravity Sci. Technol</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>25</volume><issue>5</issue><spage>311</spage><epage>318</epage><pages>311-318</pages><issn>0938-0108</issn><eissn>1875-0494</eissn><abstract>In low pressure environments macroscopic bodies can be subject to photo- and thermophoretic motion if temperature gradients are present. Porosity can increase the efficiency of this propulsion. We developed a setup to generate a temperature field and measure phoretic accelerations in a parabolic flight. In a first campaign we studied the pressure dependence of the acceleration for thin plates (1.7 mm thickness, 2.2 and 3.5 cm diameter) consisting of sintered glass spheres of a size range of 150 to 250
μ
m and 40 to 70
μ
m. We find evidence for two characteristic propulsion maxima at pressures related to the overall size of the plate as well as the bead (pore) size. The increase of the magnitude of acceleration due to the porosity is on the order of 10
−2
g for the specific samples. This force is comparable to the phoretic force attributed to the overall size of the plate.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12217-014-9357-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-0108 |
ispartof | Microgravity science and technology, 2014-02, Vol.25 (5), p.311-318 |
issn | 0938-0108 1875-0494 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800426367 |
source | Springer Nature - Complete Springer Journals |
subjects | Acceleration Aerospace Technology and Astronautics Beads Classical and Continuum Physics Engineering Low pressure Original Article Parabolic flight Porosity Propulsion Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Temperature distribution Temperature gradients Thin plates |
title | Propulsion of Porous Plates in Thin Atmospheres by Temperature Fields: Experiments on Parabolic Flights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propulsion%20of%20Porous%20Plates%20in%20Thin%20Atmospheres%20by%20Temperature%20Fields:%20Experiments%20on%20Parabolic%20Flights&rft.jtitle=Microgravity%20science%20and%20technology&rft.au=K%C3%BCpper,%20M.&rft.date=2014-02-01&rft.volume=25&rft.issue=5&rft.spage=311&rft.epage=318&rft.pages=311-318&rft.issn=0938-0108&rft.eissn=1875-0494&rft_id=info:doi/10.1007/s12217-014-9357-1&rft_dat=%3Cproquest_cross%3E3229387241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501804075&rft_id=info:pmid/&rfr_iscdi=true |