Detecting Specific Populations in Mixtures

Mixed stock analysis (MSA) estimates the relative contributions of distinct populations in a mixture of organisms. Increasingly, MSA is used to judge the presence or absence of specific populations in specific mixture samples. This is commonly done by inspecting the bootstrap confidence interval of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental biology of fishes 2004-03, Vol.69 (1-4), p.233-243
Hauptverfasser: Reynolds, Joel Howard, Templin, William David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 1-4
container_start_page 233
container_title Environmental biology of fishes
container_volume 69
creator Reynolds, Joel Howard
Templin, William David
description Mixed stock analysis (MSA) estimates the relative contributions of distinct populations in a mixture of organisms. Increasingly, MSA is used to judge the presence or absence of specific populations in specific mixture samples. This is commonly done by inspecting the bootstrap confidence interval of the contribution of interest. This method has a number of statistical deficiencies, including almost zero power to detect small contributions even if the population has perfect identifiability. We introduce a more powerful method based on the likelihood ratio test and compare both methods in a simulation demonstration using a 17 population baseline of sockeye salmon, Oncorhynchus nerka, from the Kenai River, Alaska, watershed. Power to detect a nonzero contribution will vary with the population(s) identifiability relative to the rest of the baseline, the contribution size, mixture sample size, and analysis method. The demonstration shows that the likelihood ratio method is always more powerful than the bootstrap method, the two methods only being equal when both display 100% power. Power declines for both methods as contribution declines, but it declines faster and goes to zero for the bootstrap method. Power declines quickly for both methods as population identifiability declines, though the likelihood ratio test is able to capitalize on the presence of 'perfect identification' characteristics, such as private alleles. Given the baseline-specific nature of detection power, researchers are encouraged to conduct a priori power analyses similar to the current demonstration when planning their applications.
doi_str_mv 10.1023/B:EBFI.0000022877.38588.f1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18003799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17938734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-1379130e4c0dda368d5ffab97e35ff7052378e8253285e6b90818d81bfaf2b773</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRsFb_Q-hBREjc3cl2dnuztdVCRUE9L_nYlS1pErMJ6L83sYLgQecyc3iYmZeHkAmjEaMcruaz5Xy1juhQnEvECKSQMrLsgIyYQAgFAzgkIwooQ6aoOiYn3m97XGGMI3J5Y1qTta58DZ5qkznrsuCxqrsiaV1V-sCVwb17b7vG-FNyZJPCm7PvPiYvq-Xz4i7cPNyuF9ebMAMJbcgAFQNq4ozmeQJTmQtrk1ShgX5AKnj_ipFcAJfCTFNFJZO5ZKlNLE8RYUzO93vrpnrrjG_1zvnMFEVSmqrzmknap1HqfxAVSIS4By_-BinEkiEK6NHJL3RbdU3Z59WSM4yZEMPh2R7Kmsr7xlhdN26XNB_9Jj140XM9eNE_XvSXF20ZfAIJzX8L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821741559</pqid></control><display><type>article</type><title>Detecting Specific Populations in Mixtures</title><source>SpringerLink Journals - AutoHoldings</source><creator>Reynolds, Joel Howard ; Templin, William David</creator><creatorcontrib>Reynolds, Joel Howard ; Templin, William David</creatorcontrib><description>Mixed stock analysis (MSA) estimates the relative contributions of distinct populations in a mixture of organisms. Increasingly, MSA is used to judge the presence or absence of specific populations in specific mixture samples. This is commonly done by inspecting the bootstrap confidence interval of the contribution of interest. This method has a number of statistical deficiencies, including almost zero power to detect small contributions even if the population has perfect identifiability. We introduce a more powerful method based on the likelihood ratio test and compare both methods in a simulation demonstration using a 17 population baseline of sockeye salmon, Oncorhynchus nerka, from the Kenai River, Alaska, watershed. Power to detect a nonzero contribution will vary with the population(s) identifiability relative to the rest of the baseline, the contribution size, mixture sample size, and analysis method. The demonstration shows that the likelihood ratio method is always more powerful than the bootstrap method, the two methods only being equal when both display 100% power. Power declines for both methods as contribution declines, but it declines faster and goes to zero for the bootstrap method. Power declines quickly for both methods as population identifiability declines, though the likelihood ratio test is able to capitalize on the presence of 'perfect identification' characteristics, such as private alleles. Given the baseline-specific nature of detection power, researchers are encouraged to conduct a priori power analyses similar to the current demonstration when planning their applications.</description><identifier>ISSN: 0378-1909</identifier><identifier>EISSN: 1573-5133</identifier><identifier>DOI: 10.1023/B:EBFI.0000022877.38588.f1</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Bootstrap method ; Confidence intervals ; Freshwater ; Methods ; Oncorhynchus nerka ; Population decline ; Salmon ; Studies</subject><ispartof>Environmental biology of fishes, 2004-03, Vol.69 (1-4), p.233-243</ispartof><rights>Kluwer Academic Publishers 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-1379130e4c0dda368d5ffab97e35ff7052378e8253285e6b90818d81bfaf2b773</citedby><cites>FETCH-LOGICAL-c383t-1379130e4c0dda368d5ffab97e35ff7052378e8253285e6b90818d81bfaf2b773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Reynolds, Joel Howard</creatorcontrib><creatorcontrib>Templin, William David</creatorcontrib><title>Detecting Specific Populations in Mixtures</title><title>Environmental biology of fishes</title><description>Mixed stock analysis (MSA) estimates the relative contributions of distinct populations in a mixture of organisms. Increasingly, MSA is used to judge the presence or absence of specific populations in specific mixture samples. This is commonly done by inspecting the bootstrap confidence interval of the contribution of interest. This method has a number of statistical deficiencies, including almost zero power to detect small contributions even if the population has perfect identifiability. We introduce a more powerful method based on the likelihood ratio test and compare both methods in a simulation demonstration using a 17 population baseline of sockeye salmon, Oncorhynchus nerka, from the Kenai River, Alaska, watershed. Power to detect a nonzero contribution will vary with the population(s) identifiability relative to the rest of the baseline, the contribution size, mixture sample size, and analysis method. The demonstration shows that the likelihood ratio method is always more powerful than the bootstrap method, the two methods only being equal when both display 100% power. Power declines for both methods as contribution declines, but it declines faster and goes to zero for the bootstrap method. Power declines quickly for both methods as population identifiability declines, though the likelihood ratio test is able to capitalize on the presence of 'perfect identification' characteristics, such as private alleles. Given the baseline-specific nature of detection power, researchers are encouraged to conduct a priori power analyses similar to the current demonstration when planning their applications.</description><subject>Bootstrap method</subject><subject>Confidence intervals</subject><subject>Freshwater</subject><subject>Methods</subject><subject>Oncorhynchus nerka</subject><subject>Population decline</subject><subject>Salmon</subject><subject>Studies</subject><issn>0378-1909</issn><issn>1573-5133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1Lw0AQhhdRsFb_Q-hBREjc3cl2dnuztdVCRUE9L_nYlS1pErMJ6L83sYLgQecyc3iYmZeHkAmjEaMcruaz5Xy1juhQnEvECKSQMrLsgIyYQAgFAzgkIwooQ6aoOiYn3m97XGGMI3J5Y1qTta58DZ5qkznrsuCxqrsiaV1V-sCVwb17b7vG-FNyZJPCm7PvPiYvq-Xz4i7cPNyuF9ebMAMJbcgAFQNq4ozmeQJTmQtrk1ShgX5AKnj_ipFcAJfCTFNFJZO5ZKlNLE8RYUzO93vrpnrrjG_1zvnMFEVSmqrzmknap1HqfxAVSIS4By_-BinEkiEK6NHJL3RbdU3Z59WSM4yZEMPh2R7Kmsr7xlhdN26XNB_9Jj140XM9eNE_XvSXF20ZfAIJzX8L</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Reynolds, Joel Howard</creator><creator>Templin, William David</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>H96</scope></search><sort><creationdate>20040301</creationdate><title>Detecting Specific Populations in Mixtures</title><author>Reynolds, Joel Howard ; Templin, William David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-1379130e4c0dda368d5ffab97e35ff7052378e8253285e6b90818d81bfaf2b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bootstrap method</topic><topic>Confidence intervals</topic><topic>Freshwater</topic><topic>Methods</topic><topic>Oncorhynchus nerka</topic><topic>Population decline</topic><topic>Salmon</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, Joel Howard</creatorcontrib><creatorcontrib>Templin, William David</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><jtitle>Environmental biology of fishes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, Joel Howard</au><au>Templin, William David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Specific Populations in Mixtures</atitle><jtitle>Environmental biology of fishes</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>69</volume><issue>1-4</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>0378-1909</issn><eissn>1573-5133</eissn><abstract>Mixed stock analysis (MSA) estimates the relative contributions of distinct populations in a mixture of organisms. Increasingly, MSA is used to judge the presence or absence of specific populations in specific mixture samples. This is commonly done by inspecting the bootstrap confidence interval of the contribution of interest. This method has a number of statistical deficiencies, including almost zero power to detect small contributions even if the population has perfect identifiability. We introduce a more powerful method based on the likelihood ratio test and compare both methods in a simulation demonstration using a 17 population baseline of sockeye salmon, Oncorhynchus nerka, from the Kenai River, Alaska, watershed. Power to detect a nonzero contribution will vary with the population(s) identifiability relative to the rest of the baseline, the contribution size, mixture sample size, and analysis method. The demonstration shows that the likelihood ratio method is always more powerful than the bootstrap method, the two methods only being equal when both display 100% power. Power declines for both methods as contribution declines, but it declines faster and goes to zero for the bootstrap method. Power declines quickly for both methods as population identifiability declines, though the likelihood ratio test is able to capitalize on the presence of 'perfect identification' characteristics, such as private alleles. Given the baseline-specific nature of detection power, researchers are encouraged to conduct a priori power analyses similar to the current demonstration when planning their applications.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/B:EBFI.0000022877.38588.f1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-1909
ispartof Environmental biology of fishes, 2004-03, Vol.69 (1-4), p.233-243
issn 0378-1909
1573-5133
language eng
recordid cdi_proquest_miscellaneous_18003799
source SpringerLink Journals - AutoHoldings
subjects Bootstrap method
Confidence intervals
Freshwater
Methods
Oncorhynchus nerka
Population decline
Salmon
Studies
title Detecting Specific Populations in Mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Specific%20Populations%20in%20Mixtures&rft.jtitle=Environmental%20biology%20of%20fishes&rft.au=Reynolds,%20Joel%20Howard&rft.date=2004-03-01&rft.volume=69&rft.issue=1-4&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=0378-1909&rft.eissn=1573-5133&rft_id=info:doi/10.1023/B:EBFI.0000022877.38588.f1&rft_dat=%3Cproquest_cross%3E17938734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821741559&rft_id=info:pmid/&rfr_iscdi=true