Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst
Summary Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the r...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2004-06, Vol.52 (5), p.1291-1302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1302 |
---|---|
container_issue | 5 |
container_start_page | 1291 |
container_title | Molecular microbiology |
container_volume | 52 |
creator | Ng, Vincent H. Cox, Jeffery S. Sousa, Alexandra O. MacMicking, John D. McKinney, John D. |
description | Summary
Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable. |
doi_str_mv | 10.1111/j.1365-2958.2004.04078.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17991171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>652229881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERZfCKyALCW4JdhwnNhKHqoK2ohUSAombNXGcXUfZONgO7N54BJ6RJ8HprgrihH3weOb7R6P5EcKU5DSdV31OWcWzQnKRF4SUOSlJLfLdA7S6LzxEKyI5yZgovpyixyH0hFBGKvYInVJOK14wtkL9RzcY7Dr8HuIl1hBhgGB-_fg5Ge92tk0fbEe83WvXgI7GWxjwBHHj1mY0wYbXWLt5XArjGseNwdMG1k7vY-q66KP9ZnAz-xCfoJMOhmCeHt8z9Pnd208XV9nNh8vri_ObTHNCRQZ1q9uCM9ZJ0ZRtx7q20KzRwEwpS9HIsuFa1ilHhRCMtCWlpC6k1CmnAdgZennoO3n3dTYhqq0N2gwDjMbNQdFaSkprmsDn_4C9m_2YZlNUVpySsmIJEgdIexeCN52avN2C3ytK1GKG6tWyc7XsXC1mqDsz1C5Jnx37z83WtH-Ex-0n4MURgKBh6DyM2oa_uFoW6SbuzYH7bgez_-8B1O3t9RKx30e_p0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196510463</pqid></control><display><type>article</type><title>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ng, Vincent H. ; Cox, Jeffery S. ; Sousa, Alexandra O. ; MacMicking, John D. ; McKinney, John D.</creator><creatorcontrib>Ng, Vincent H. ; Cox, Jeffery S. ; Sousa, Alexandra O. ; MacMicking, John D. ; McKinney, John D.</creatorcontrib><description>Summary
Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2004.04078.x</identifier><identifier>PMID: 15165233</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Catalase ; Cells, Cultured ; Female ; Fundamental and applied biological sciences. Psychology ; Granulomatous Disease, Chronic - complications ; Granulomatous Disease, Chronic - microbiology ; Granulomatous Disease, Chronic - pathology ; Hydrogen Peroxide - metabolism ; Lung - metabolism ; Lung - pathology ; Macrophages - cytology ; Macrophages - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microbiology ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - pathogenicity ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Nitric Oxide Synthase - genetics ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type II ; Oxidants - metabolism ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Phagocytes - metabolism ; Reactive Oxygen Species - metabolism ; Respiratory Burst</subject><ispartof>Molecular microbiology, 2004-06, Vol.52 (5), p.1291-1302</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</citedby><cites>FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2004.04078.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2004.04078.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15792929$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15165233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Vincent H.</creatorcontrib><creatorcontrib>Cox, Jeffery S.</creatorcontrib><creatorcontrib>Sousa, Alexandra O.</creatorcontrib><creatorcontrib>MacMicking, John D.</creatorcontrib><creatorcontrib>McKinney, John D.</creatorcontrib><title>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.</description><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Catalase</subject><subject>Cells, Cultured</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Granulomatous Disease, Chronic - complications</subject><subject>Granulomatous Disease, Chronic - microbiology</subject><subject>Granulomatous Disease, Chronic - pathology</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microbiology</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Nitric Oxide Synthase - genetics</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type II</subject><subject>Oxidants - metabolism</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Phagocytes - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory Burst</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi1ERZfCKyALCW4JdhwnNhKHqoK2ohUSAombNXGcXUfZONgO7N54BJ6RJ8HprgrihH3weOb7R6P5EcKU5DSdV31OWcWzQnKRF4SUOSlJLfLdA7S6LzxEKyI5yZgovpyixyH0hFBGKvYInVJOK14wtkL9RzcY7Dr8HuIl1hBhgGB-_fg5Ge92tk0fbEe83WvXgI7GWxjwBHHj1mY0wYbXWLt5XArjGseNwdMG1k7vY-q66KP9ZnAz-xCfoJMOhmCeHt8z9Pnd208XV9nNh8vri_ObTHNCRQZ1q9uCM9ZJ0ZRtx7q20KzRwEwpS9HIsuFa1ilHhRCMtCWlpC6k1CmnAdgZennoO3n3dTYhqq0N2gwDjMbNQdFaSkprmsDn_4C9m_2YZlNUVpySsmIJEgdIexeCN52avN2C3ytK1GKG6tWyc7XsXC1mqDsz1C5Jnx37z83WtH-Ex-0n4MURgKBh6DyM2oa_uFoW6SbuzYH7bgez_-8B1O3t9RKx30e_p0M</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Ng, Vincent H.</creator><creator>Cox, Jeffery S.</creator><creator>Sousa, Alexandra O.</creator><creator>MacMicking, John D.</creator><creator>McKinney, John D.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200406</creationdate><title>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</title><author>Ng, Vincent H. ; Cox, Jeffery S. ; Sousa, Alexandra O. ; MacMicking, John D. ; McKinney, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Catalase</topic><topic>Cells, Cultured</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Granulomatous Disease, Chronic - complications</topic><topic>Granulomatous Disease, Chronic - microbiology</topic><topic>Granulomatous Disease, Chronic - pathology</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microbiology</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Nitric Oxide Synthase - genetics</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type II</topic><topic>Oxidants - metabolism</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Phagocytes - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory Burst</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Vincent H.</creatorcontrib><creatorcontrib>Cox, Jeffery S.</creatorcontrib><creatorcontrib>Sousa, Alexandra O.</creatorcontrib><creatorcontrib>MacMicking, John D.</creatorcontrib><creatorcontrib>McKinney, John D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Vincent H.</au><au>Cox, Jeffery S.</au><au>Sousa, Alexandra O.</au><au>MacMicking, John D.</au><au>McKinney, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-06</date><risdate>2004</risdate><volume>52</volume><issue>5</issue><spage>1291</spage><epage>1302</epage><pages>1291-1302</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15165233</pmid><doi>10.1111/j.1365-2958.2004.04078.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2004-06, Vol.52 (5), p.1291-1302 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_17991171 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological and medical sciences Catalase Cells, Cultured Female Fundamental and applied biological sciences. Psychology Granulomatous Disease, Chronic - complications Granulomatous Disease, Chronic - microbiology Granulomatous Disease, Chronic - pathology Hydrogen Peroxide - metabolism Lung - metabolism Lung - pathology Macrophages - cytology Macrophages - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Microbiology Mycobacterium tuberculosis Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - metabolism Mycobacterium tuberculosis - pathogenicity NADPH Oxidases - genetics NADPH Oxidases - metabolism Nitric Oxide Synthase - genetics Nitric Oxide Synthase - metabolism Nitric Oxide Synthase Type II Oxidants - metabolism Oxidoreductases - genetics Oxidoreductases - metabolism Phagocytes - metabolism Reactive Oxygen Species - metabolism Respiratory Burst |
title | Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20KatG%20catalase%E2%80%90peroxidase%20in%20mycobacterial%20pathogenesis:%20countering%20the%20phagocyte%20oxidative%20burst&rft.jtitle=Molecular%20microbiology&rft.au=Ng,%20Vincent%20H.&rft.date=2004-06&rft.volume=52&rft.issue=5&rft.spage=1291&rft.epage=1302&rft.pages=1291-1302&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2004.04078.x&rft_dat=%3Cproquest_cross%3E652229881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196510463&rft_id=info:pmid/15165233&rfr_iscdi=true |