Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst

Summary Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2004-06, Vol.52 (5), p.1291-1302
Hauptverfasser: Ng, Vincent H., Cox, Jeffery S., Sousa, Alexandra O., MacMicking, John D., McKinney, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1302
container_issue 5
container_start_page 1291
container_title Molecular microbiology
container_volume 52
creator Ng, Vincent H.
Cox, Jeffery S.
Sousa, Alexandra O.
MacMicking, John D.
McKinney, John D.
description Summary Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.
doi_str_mv 10.1111/j.1365-2958.2004.04078.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17991171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>652229881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERZfCKyALCW4JdhwnNhKHqoK2ohUSAombNXGcXUfZONgO7N54BJ6RJ8HprgrihH3weOb7R6P5EcKU5DSdV31OWcWzQnKRF4SUOSlJLfLdA7S6LzxEKyI5yZgovpyixyH0hFBGKvYInVJOK14wtkL9RzcY7Dr8HuIl1hBhgGB-_fg5Ge92tk0fbEe83WvXgI7GWxjwBHHj1mY0wYbXWLt5XArjGseNwdMG1k7vY-q66KP9ZnAz-xCfoJMOhmCeHt8z9Pnd208XV9nNh8vri_ObTHNCRQZ1q9uCM9ZJ0ZRtx7q20KzRwEwpS9HIsuFa1ilHhRCMtCWlpC6k1CmnAdgZennoO3n3dTYhqq0N2gwDjMbNQdFaSkprmsDn_4C9m_2YZlNUVpySsmIJEgdIexeCN52avN2C3ytK1GKG6tWyc7XsXC1mqDsz1C5Jnx37z83WtH-Ex-0n4MURgKBh6DyM2oa_uFoW6SbuzYH7bgez_-8B1O3t9RKx30e_p0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196510463</pqid></control><display><type>article</type><title>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Ng, Vincent H. ; Cox, Jeffery S. ; Sousa, Alexandra O. ; MacMicking, John D. ; McKinney, John D.</creator><creatorcontrib>Ng, Vincent H. ; Cox, Jeffery S. ; Sousa, Alexandra O. ; MacMicking, John D. ; McKinney, John D.</creatorcontrib><description>Summary Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2004.04078.x</identifier><identifier>PMID: 15165233</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Catalase ; Cells, Cultured ; Female ; Fundamental and applied biological sciences. Psychology ; Granulomatous Disease, Chronic - complications ; Granulomatous Disease, Chronic - microbiology ; Granulomatous Disease, Chronic - pathology ; Hydrogen Peroxide - metabolism ; Lung - metabolism ; Lung - pathology ; Macrophages - cytology ; Macrophages - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microbiology ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis - pathogenicity ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; Nitric Oxide Synthase - genetics ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type II ; Oxidants - metabolism ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Phagocytes - metabolism ; Reactive Oxygen Species - metabolism ; Respiratory Burst</subject><ispartof>Molecular microbiology, 2004-06, Vol.52 (5), p.1291-1302</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</citedby><cites>FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2004.04078.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2004.04078.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15792929$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15165233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Vincent H.</creatorcontrib><creatorcontrib>Cox, Jeffery S.</creatorcontrib><creatorcontrib>Sousa, Alexandra O.</creatorcontrib><creatorcontrib>MacMicking, John D.</creatorcontrib><creatorcontrib>McKinney, John D.</creatorcontrib><title>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.</description><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Catalase</subject><subject>Cells, Cultured</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Granulomatous Disease, Chronic - complications</subject><subject>Granulomatous Disease, Chronic - microbiology</subject><subject>Granulomatous Disease, Chronic - pathology</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Lung - metabolism</subject><subject>Lung - pathology</subject><subject>Macrophages - cytology</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microbiology</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>Nitric Oxide Synthase - genetics</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type II</subject><subject>Oxidants - metabolism</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Phagocytes - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory Burst</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi1ERZfCKyALCW4JdhwnNhKHqoK2ohUSAombNXGcXUfZONgO7N54BJ6RJ8HprgrihH3weOb7R6P5EcKU5DSdV31OWcWzQnKRF4SUOSlJLfLdA7S6LzxEKyI5yZgovpyixyH0hFBGKvYInVJOK14wtkL9RzcY7Dr8HuIl1hBhgGB-_fg5Ge92tk0fbEe83WvXgI7GWxjwBHHj1mY0wYbXWLt5XArjGseNwdMG1k7vY-q66KP9ZnAz-xCfoJMOhmCeHt8z9Pnd208XV9nNh8vri_ObTHNCRQZ1q9uCM9ZJ0ZRtx7q20KzRwEwpS9HIsuFa1ilHhRCMtCWlpC6k1CmnAdgZennoO3n3dTYhqq0N2gwDjMbNQdFaSkprmsDn_4C9m_2YZlNUVpySsmIJEgdIexeCN52avN2C3ytK1GKG6tWyc7XsXC1mqDsz1C5Jnx37z83WtH-Ex-0n4MURgKBh6DyM2oa_uFoW6SbuzYH7bgez_-8B1O3t9RKx30e_p0M</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Ng, Vincent H.</creator><creator>Cox, Jeffery S.</creator><creator>Sousa, Alexandra O.</creator><creator>MacMicking, John D.</creator><creator>McKinney, John D.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200406</creationdate><title>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</title><author>Ng, Vincent H. ; Cox, Jeffery S. ; Sousa, Alexandra O. ; MacMicking, John D. ; McKinney, John D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5018-a7dcd2533f98b4df3fd2c3bca3e4948b94b5c972c3188830d41107299c72ccaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Catalase</topic><topic>Cells, Cultured</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Granulomatous Disease, Chronic - complications</topic><topic>Granulomatous Disease, Chronic - microbiology</topic><topic>Granulomatous Disease, Chronic - pathology</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Lung - metabolism</topic><topic>Lung - pathology</topic><topic>Macrophages - cytology</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microbiology</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>Nitric Oxide Synthase - genetics</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type II</topic><topic>Oxidants - metabolism</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Phagocytes - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory Burst</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Vincent H.</creatorcontrib><creatorcontrib>Cox, Jeffery S.</creatorcontrib><creatorcontrib>Sousa, Alexandra O.</creatorcontrib><creatorcontrib>MacMicking, John D.</creatorcontrib><creatorcontrib>McKinney, John D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Vincent H.</au><au>Cox, Jeffery S.</au><au>Sousa, Alexandra O.</au><au>MacMicking, John D.</au><au>McKinney, John D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-06</date><risdate>2004</risdate><volume>52</volume><issue>5</issue><spage>1291</spage><epage>1302</epage><pages>1291-1302</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Reactive nitrogen species (RNS) play an essential role in host defence against Mycobacterium tuberculosis (MTB) in the mouse model of tuberculosis (TB), as evidenced by the increased susceptibility of mice deficient in the inducible isoform of nitric oxide synthase (NOS2). In contrast, the role of reactive oxygen species (ROS) in protection against MTB is less clear, and mice defective in the ROS‐generating phagocyte NADPH oxidase (Phox) are relatively resistant. This suggests that MTB might possess efficient mechanisms to evade or counter the phagocyte oxidative burst, effectively masking the impact of this host defence mechanism. In order to assess the role of ROS detoxification pathways in MTB virulence, we generated a katG null mutant of MTB, deficient in the KatG catalase‐peroxidase‐peroxynitritase, and evaluated the mutant's ability to replicate and persist in macrophages and mice. Although markedly attenuated in wild‐type C57Bl/6 mice and NOS2–/– mice, the ΔkatG MTB strain was indistinguishable from wild‐type MTB in its ability to replicate and persist in gp91Phox–/– mice lacking the gp91 subunit of NADPH oxidase. Similar observations were made with murine bone marrow macrophages infected ex vivo: growth of the ΔkatG MTB strain was impaired in macrophages from C57Bl/6 and NOS2–/– mice, but indistinguishable from wild‐type MTB in gp91Phox–/– macrophages. These results indicate that the major role of KatG in MTB pathogenesis is to catabolize the peroxides generated by the phagocyte NADPH oxidase; in the absence of this host antimicrobial mechanism, KatG is apparently dispensable.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15165233</pmid><doi>10.1111/j.1365-2958.2004.04078.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2004-06, Vol.52 (5), p.1291-1302
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_17991171
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological and medical sciences
Catalase
Cells, Cultured
Female
Fundamental and applied biological sciences. Psychology
Granulomatous Disease, Chronic - complications
Granulomatous Disease, Chronic - microbiology
Granulomatous Disease, Chronic - pathology
Hydrogen Peroxide - metabolism
Lung - metabolism
Lung - pathology
Macrophages - cytology
Macrophages - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Microbiology
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Mycobacterium tuberculosis - pathogenicity
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
Nitric Oxide Synthase - genetics
Nitric Oxide Synthase - metabolism
Nitric Oxide Synthase Type II
Oxidants - metabolism
Oxidoreductases - genetics
Oxidoreductases - metabolism
Phagocytes - metabolism
Reactive Oxygen Species - metabolism
Respiratory Burst
title Role of KatG catalase‐peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20KatG%20catalase%E2%80%90peroxidase%20in%20mycobacterial%20pathogenesis:%20countering%20the%20phagocyte%20oxidative%20burst&rft.jtitle=Molecular%20microbiology&rft.au=Ng,%20Vincent%20H.&rft.date=2004-06&rft.volume=52&rft.issue=5&rft.spage=1291&rft.epage=1302&rft.pages=1291-1302&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2004.04078.x&rft_dat=%3Cproquest_cross%3E652229881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196510463&rft_id=info:pmid/15165233&rfr_iscdi=true