How Transcription Networks Evolve and Produce Biological Novelty

The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cold Spring Harbor Symposia on Quantitative Biology 2015-01, Vol.80, p.265-274
Hauptverfasser: Nocedal, Isabel, Johnson, Alexander D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue
container_start_page 265
container_title Cold Spring Harbor Symposia on Quantitative Biology
container_volume 80
creator Nocedal, Isabel
Johnson, Alexander D
description The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.
doi_str_mv 10.1101/sqb.2015.80.027557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1798994418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798994418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</originalsourceid><addsrcrecordid>eNo90M9PwjAcBfDGaATRf8CD2dHL5rfturU3laCYEPSA56a_ZqZjhXaD8N8LAT29y3vv8EHoFkOGMeCHuNYZAcwyDhmQkrHyDA2xyGma56w4R0MAgdMyZ3iArmL8BiACs_wSDUhRsFIAG6LHqd8mi6DaaEK96mrfJnPXbX34iclk45uNS1Rrk4_gbW9c8lz7xn_VRjXJ3G9c0-2u0UWlmuhuTjlCny-TxXiazt5f38ZPs9TQvOxSphThlSaWW2sNBw60MlQ5RxRhUCmNNcFGME0Lo6gVghLQWhSFhQIL5ugI3R9_V8Gvexc7uayjcU2jWuf7KHEpuBB5jvm-So5VE3yMwVVyFeqlCjuJQR7k5F5OHuQkB3mU24_uTv-9Xjr7P_mjor9UKmpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798994418</pqid></control><display><type>article</type><title>How Transcription Networks Evolve and Produce Biological Novelty</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nocedal, Isabel ; Johnson, Alexander D</creator><creatorcontrib>Nocedal, Isabel ; Johnson, Alexander D</creatorcontrib><description>The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.</description><identifier>ISSN: 0091-7451</identifier><identifier>EISSN: 1943-4456</identifier><identifier>DOI: 10.1101/sqb.2015.80.027557</identifier><identifier>PMID: 26657905</identifier><language>eng</language><publisher>United States</publisher><subject>Ascomycota - genetics ; Biological Evolution ; Evolution, Molecular ; Gene Regulatory Networks - genetics ; Phenotype</subject><ispartof>Cold Spring Harbor Symposia on Quantitative Biology, 2015-01, Vol.80, p.265-274</ispartof><rights>Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</citedby><cites>FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26657905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nocedal, Isabel</creatorcontrib><creatorcontrib>Johnson, Alexander D</creatorcontrib><title>How Transcription Networks Evolve and Produce Biological Novelty</title><title>Cold Spring Harbor Symposia on Quantitative Biology</title><addtitle>Cold Spring Harb Symp Quant Biol</addtitle><description>The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.</description><subject>Ascomycota - genetics</subject><subject>Biological Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Phenotype</subject><issn>0091-7451</issn><issn>1943-4456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90M9PwjAcBfDGaATRf8CD2dHL5rfturU3laCYEPSA56a_ZqZjhXaD8N8LAT29y3vv8EHoFkOGMeCHuNYZAcwyDhmQkrHyDA2xyGma56w4R0MAgdMyZ3iArmL8BiACs_wSDUhRsFIAG6LHqd8mi6DaaEK96mrfJnPXbX34iclk45uNS1Rrk4_gbW9c8lz7xn_VRjXJ3G9c0-2u0UWlmuhuTjlCny-TxXiazt5f38ZPs9TQvOxSphThlSaWW2sNBw60MlQ5RxRhUCmNNcFGME0Lo6gVghLQWhSFhQIL5ugI3R9_V8Gvexc7uayjcU2jWuf7KHEpuBB5jvm-So5VE3yMwVVyFeqlCjuJQR7k5F5OHuQkB3mU24_uTv-9Xjr7P_mjor9UKmpn</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Nocedal, Isabel</creator><creator>Johnson, Alexander D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>How Transcription Networks Evolve and Produce Biological Novelty</title><author>Nocedal, Isabel ; Johnson, Alexander D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ascomycota - genetics</topic><topic>Biological Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nocedal, Isabel</creatorcontrib><creatorcontrib>Johnson, Alexander D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cold Spring Harbor Symposia on Quantitative Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nocedal, Isabel</au><au>Johnson, Alexander D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Transcription Networks Evolve and Produce Biological Novelty</atitle><jtitle>Cold Spring Harbor Symposia on Quantitative Biology</jtitle><addtitle>Cold Spring Harb Symp Quant Biol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>80</volume><spage>265</spage><epage>274</epage><pages>265-274</pages><issn>0091-7451</issn><eissn>1943-4456</eissn><abstract>The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.</abstract><cop>United States</cop><pmid>26657905</pmid><doi>10.1101/sqb.2015.80.027557</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-7451
ispartof Cold Spring Harbor Symposia on Quantitative Biology, 2015-01, Vol.80, p.265-274
issn 0091-7451
1943-4456
language eng
recordid cdi_proquest_miscellaneous_1798994418
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Ascomycota - genetics
Biological Evolution
Evolution, Molecular
Gene Regulatory Networks - genetics
Phenotype
title How Transcription Networks Evolve and Produce Biological Novelty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Transcription%20Networks%20Evolve%20and%20Produce%20Biological%20Novelty&rft.jtitle=Cold%20Spring%20Harbor%20Symposia%20on%20Quantitative%20Biology&rft.au=Nocedal,%20Isabel&rft.date=2015-01-01&rft.volume=80&rft.spage=265&rft.epage=274&rft.pages=265-274&rft.issn=0091-7451&rft.eissn=1943-4456&rft_id=info:doi/10.1101/sqb.2015.80.027557&rft_dat=%3Cproquest_cross%3E1798994418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798994418&rft_id=info:pmid/26657905&rfr_iscdi=true