How Transcription Networks Evolve and Produce Biological Novelty
The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analy...
Gespeichert in:
Veröffentlicht in: | Cold Spring Harbor Symposia on Quantitative Biology 2015-01, Vol.80, p.265-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | |
container_start_page | 265 |
container_title | Cold Spring Harbor Symposia on Quantitative Biology |
container_volume | 80 |
creator | Nocedal, Isabel Johnson, Alexander D |
description | The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories. |
doi_str_mv | 10.1101/sqb.2015.80.027557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1798994418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798994418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</originalsourceid><addsrcrecordid>eNo90M9PwjAcBfDGaATRf8CD2dHL5rfturU3laCYEPSA56a_ZqZjhXaD8N8LAT29y3vv8EHoFkOGMeCHuNYZAcwyDhmQkrHyDA2xyGma56w4R0MAgdMyZ3iArmL8BiACs_wSDUhRsFIAG6LHqd8mi6DaaEK96mrfJnPXbX34iclk45uNS1Rrk4_gbW9c8lz7xn_VRjXJ3G9c0-2u0UWlmuhuTjlCny-TxXiazt5f38ZPs9TQvOxSphThlSaWW2sNBw60MlQ5RxRhUCmNNcFGME0Lo6gVghLQWhSFhQIL5ugI3R9_V8Gvexc7uayjcU2jWuf7KHEpuBB5jvm-So5VE3yMwVVyFeqlCjuJQR7k5F5OHuQkB3mU24_uTv-9Xjr7P_mjor9UKmpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798994418</pqid></control><display><type>article</type><title>How Transcription Networks Evolve and Produce Biological Novelty</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nocedal, Isabel ; Johnson, Alexander D</creator><creatorcontrib>Nocedal, Isabel ; Johnson, Alexander D</creatorcontrib><description>The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.</description><identifier>ISSN: 0091-7451</identifier><identifier>EISSN: 1943-4456</identifier><identifier>DOI: 10.1101/sqb.2015.80.027557</identifier><identifier>PMID: 26657905</identifier><language>eng</language><publisher>United States</publisher><subject>Ascomycota - genetics ; Biological Evolution ; Evolution, Molecular ; Gene Regulatory Networks - genetics ; Phenotype</subject><ispartof>Cold Spring Harbor Symposia on Quantitative Biology, 2015-01, Vol.80, p.265-274</ispartof><rights>Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</citedby><cites>FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26657905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nocedal, Isabel</creatorcontrib><creatorcontrib>Johnson, Alexander D</creatorcontrib><title>How Transcription Networks Evolve and Produce Biological Novelty</title><title>Cold Spring Harbor Symposia on Quantitative Biology</title><addtitle>Cold Spring Harb Symp Quant Biol</addtitle><description>The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.</description><subject>Ascomycota - genetics</subject><subject>Biological Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Phenotype</subject><issn>0091-7451</issn><issn>1943-4456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90M9PwjAcBfDGaATRf8CD2dHL5rfturU3laCYEPSA56a_ZqZjhXaD8N8LAT29y3vv8EHoFkOGMeCHuNYZAcwyDhmQkrHyDA2xyGma56w4R0MAgdMyZ3iArmL8BiACs_wSDUhRsFIAG6LHqd8mi6DaaEK96mrfJnPXbX34iclk45uNS1Rrk4_gbW9c8lz7xn_VRjXJ3G9c0-2u0UWlmuhuTjlCny-TxXiazt5f38ZPs9TQvOxSphThlSaWW2sNBw60MlQ5RxRhUCmNNcFGME0Lo6gVghLQWhSFhQIL5ugI3R9_V8Gvexc7uayjcU2jWuf7KHEpuBB5jvm-So5VE3yMwVVyFeqlCjuJQR7k5F5OHuQkB3mU24_uTv-9Xjr7P_mjor9UKmpn</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Nocedal, Isabel</creator><creator>Johnson, Alexander D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20150101</creationdate><title>How Transcription Networks Evolve and Produce Biological Novelty</title><author>Nocedal, Isabel ; Johnson, Alexander D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-5aa28fb2d8dddc80803fc3aee2a250fab1b21c95b36ca3d99320bb966d06195e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ascomycota - genetics</topic><topic>Biological Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Phenotype</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nocedal, Isabel</creatorcontrib><creatorcontrib>Johnson, Alexander D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cold Spring Harbor Symposia on Quantitative Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nocedal, Isabel</au><au>Johnson, Alexander D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Transcription Networks Evolve and Produce Biological Novelty</atitle><jtitle>Cold Spring Harbor Symposia on Quantitative Biology</jtitle><addtitle>Cold Spring Harb Symp Quant Biol</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>80</volume><spage>265</spage><epage>274</epage><pages>265-274</pages><issn>0091-7451</issn><eissn>1943-4456</eissn><abstract>The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.</abstract><cop>United States</cop><pmid>26657905</pmid><doi>10.1101/sqb.2015.80.027557</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7451 |
ispartof | Cold Spring Harbor Symposia on Quantitative Biology, 2015-01, Vol.80, p.265-274 |
issn | 0091-7451 1943-4456 |
language | eng |
recordid | cdi_proquest_miscellaneous_1798994418 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Ascomycota - genetics Biological Evolution Evolution, Molecular Gene Regulatory Networks - genetics Phenotype |
title | How Transcription Networks Evolve and Produce Biological Novelty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Transcription%20Networks%20Evolve%20and%20Produce%20Biological%20Novelty&rft.jtitle=Cold%20Spring%20Harbor%20Symposia%20on%20Quantitative%20Biology&rft.au=Nocedal,%20Isabel&rft.date=2015-01-01&rft.volume=80&rft.spage=265&rft.epage=274&rft.pages=265-274&rft.issn=0091-7451&rft.eissn=1943-4456&rft_id=info:doi/10.1101/sqb.2015.80.027557&rft_dat=%3Cproquest_cross%3E1798994418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798994418&rft_id=info:pmid/26657905&rfr_iscdi=true |