ANN prediction of some geotechnical properties of soil from their index parameters
This paper presents artificial neural network prediction models which relate compaction characteristics, permeability, and soil shear strength to soil index properties. In this study, a database including a total number of 580 data sets was compiled. The database contains the results of grain size d...
Gespeichert in:
Veröffentlicht in: | Arabian journal of geosciences 2015-05, Vol.8 (5), p.2911-2920 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2920 |
---|---|
container_issue | 5 |
container_start_page | 2911 |
container_title | Arabian journal of geosciences |
container_volume | 8 |
creator | Tizpa, Parichehr Jamshidi Chenari, Reza Karimpour Fard, Mehran Lemos Machado, Sandro |
description | This paper presents artificial neural network prediction models which relate compaction characteristics, permeability, and soil shear strength to soil index properties. In this study, a database including a total number of 580 data sets was compiled. The database contains the results of grain size distribution, Atterberg limits, compaction, permeability measured at different levels of compaction degree (90–100 %) and consolidated–drained triaxial compression tests. Comparison between the results of the developed models and experimental data indicates that predictions are within a confidence interval of 95 %. To evaluate the effect of each factor on these geotechnical parameters, sensitivity analysis was performed and discussed. According to the performed sensitivity analysis, Atterbeg limits and the soil fine content (silt + clay) are the most important variables in predicting the maximum dry density and optimum moisture content. Another aspect that is coherent from the sensitivity analysis is the considerable importance of the compaction degree in the prediction of the permeability coefficient. However, it can be seen that effective friction angle of shearing is highly dependent on the bulk density of soil. |
doi_str_mv | 10.1007/s12517-014-1304-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1798739472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798739472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-cabd4e3530eaff6ba5e4bba7be1317a7c28f8890e172c549c19ecd8b8935dec13</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG85eolmmrZJj8viP1hWED2HNJ3uZmmbmnRBv72RikdPM_DeG-b9CLkGfgucy7sIWQGSccgZCJ4zcUIWoMqSyUKo078d4JxcxHjgvFRcqgV5XW23dAzYODs5P1Df0uh7pDv0E9r94Kzpku5HDJPDOOuuo23wPZ326AJ1Q4OfdDTB9DhhiJfkrDVdxKvfuSTvD_dv6ye2eXl8Xq82zIoMJmZN3eQoCsHRtG1ZmwLzujayRhAgjbSZapWqOILMbJFXFiq0japVJYoGLYgluZnvpvc-jhgn3btosevMgP4YNchKSVHlMktWmK02-BgDtnoMrjfhSwPXP_z0zE8nfvqHnxYpk82ZmLzDDoM--GMYUqN_Qt9tnHRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798739472</pqid></control><display><type>article</type><title>ANN prediction of some geotechnical properties of soil from their index parameters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tizpa, Parichehr ; Jamshidi Chenari, Reza ; Karimpour Fard, Mehran ; Lemos Machado, Sandro</creator><creatorcontrib>Tizpa, Parichehr ; Jamshidi Chenari, Reza ; Karimpour Fard, Mehran ; Lemos Machado, Sandro</creatorcontrib><description>This paper presents artificial neural network prediction models which relate compaction characteristics, permeability, and soil shear strength to soil index properties. In this study, a database including a total number of 580 data sets was compiled. The database contains the results of grain size distribution, Atterberg limits, compaction, permeability measured at different levels of compaction degree (90–100 %) and consolidated–drained triaxial compression tests. Comparison between the results of the developed models and experimental data indicates that predictions are within a confidence interval of 95 %. To evaluate the effect of each factor on these geotechnical parameters, sensitivity analysis was performed and discussed. According to the performed sensitivity analysis, Atterbeg limits and the soil fine content (silt + clay) are the most important variables in predicting the maximum dry density and optimum moisture content. Another aspect that is coherent from the sensitivity analysis is the considerable importance of the compaction degree in the prediction of the permeability coefficient. However, it can be seen that effective friction angle of shearing is highly dependent on the bulk density of soil.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-014-1304-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Original Paper</subject><ispartof>Arabian journal of geosciences, 2015-05, Vol.8 (5), p.2911-2920</ispartof><rights>Saudi Society for Geosciences 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-cabd4e3530eaff6ba5e4bba7be1317a7c28f8890e172c549c19ecd8b8935dec13</citedby><cites>FETCH-LOGICAL-c321t-cabd4e3530eaff6ba5e4bba7be1317a7c28f8890e172c549c19ecd8b8935dec13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-014-1304-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-014-1304-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tizpa, Parichehr</creatorcontrib><creatorcontrib>Jamshidi Chenari, Reza</creatorcontrib><creatorcontrib>Karimpour Fard, Mehran</creatorcontrib><creatorcontrib>Lemos Machado, Sandro</creatorcontrib><title>ANN prediction of some geotechnical properties of soil from their index parameters</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>This paper presents artificial neural network prediction models which relate compaction characteristics, permeability, and soil shear strength to soil index properties. In this study, a database including a total number of 580 data sets was compiled. The database contains the results of grain size distribution, Atterberg limits, compaction, permeability measured at different levels of compaction degree (90–100 %) and consolidated–drained triaxial compression tests. Comparison between the results of the developed models and experimental data indicates that predictions are within a confidence interval of 95 %. To evaluate the effect of each factor on these geotechnical parameters, sensitivity analysis was performed and discussed. According to the performed sensitivity analysis, Atterbeg limits and the soil fine content (silt + clay) are the most important variables in predicting the maximum dry density and optimum moisture content. Another aspect that is coherent from the sensitivity analysis is the considerable importance of the compaction degree in the prediction of the permeability coefficient. However, it can be seen that effective friction angle of shearing is highly dependent on the bulk density of soil.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Original Paper</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG85eolmmrZJj8viP1hWED2HNJ3uZmmbmnRBv72RikdPM_DeG-b9CLkGfgucy7sIWQGSccgZCJ4zcUIWoMqSyUKo078d4JxcxHjgvFRcqgV5XW23dAzYODs5P1Df0uh7pDv0E9r94Kzpku5HDJPDOOuuo23wPZ326AJ1Q4OfdDTB9DhhiJfkrDVdxKvfuSTvD_dv6ye2eXl8Xq82zIoMJmZN3eQoCsHRtG1ZmwLzujayRhAgjbSZapWqOILMbJFXFiq0japVJYoGLYgluZnvpvc-jhgn3btosevMgP4YNchKSVHlMktWmK02-BgDtnoMrjfhSwPXP_z0zE8nfvqHnxYpk82ZmLzDDoM--GMYUqN_Qt9tnHRY</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Tizpa, Parichehr</creator><creator>Jamshidi Chenari, Reza</creator><creator>Karimpour Fard, Mehran</creator><creator>Lemos Machado, Sandro</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20150501</creationdate><title>ANN prediction of some geotechnical properties of soil from their index parameters</title><author>Tizpa, Parichehr ; Jamshidi Chenari, Reza ; Karimpour Fard, Mehran ; Lemos Machado, Sandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-cabd4e3530eaff6ba5e4bba7be1317a7c28f8890e172c549c19ecd8b8935dec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tizpa, Parichehr</creatorcontrib><creatorcontrib>Jamshidi Chenari, Reza</creatorcontrib><creatorcontrib>Karimpour Fard, Mehran</creatorcontrib><creatorcontrib>Lemos Machado, Sandro</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tizpa, Parichehr</au><au>Jamshidi Chenari, Reza</au><au>Karimpour Fard, Mehran</au><au>Lemos Machado, Sandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANN prediction of some geotechnical properties of soil from their index parameters</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>8</volume><issue>5</issue><spage>2911</spage><epage>2920</epage><pages>2911-2920</pages><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>This paper presents artificial neural network prediction models which relate compaction characteristics, permeability, and soil shear strength to soil index properties. In this study, a database including a total number of 580 data sets was compiled. The database contains the results of grain size distribution, Atterberg limits, compaction, permeability measured at different levels of compaction degree (90–100 %) and consolidated–drained triaxial compression tests. Comparison between the results of the developed models and experimental data indicates that predictions are within a confidence interval of 95 %. To evaluate the effect of each factor on these geotechnical parameters, sensitivity analysis was performed and discussed. According to the performed sensitivity analysis, Atterbeg limits and the soil fine content (silt + clay) are the most important variables in predicting the maximum dry density and optimum moisture content. Another aspect that is coherent from the sensitivity analysis is the considerable importance of the compaction degree in the prediction of the permeability coefficient. However, it can be seen that effective friction angle of shearing is highly dependent on the bulk density of soil.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12517-014-1304-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-7511 |
ispartof | Arabian journal of geosciences, 2015-05, Vol.8 (5), p.2911-2920 |
issn | 1866-7511 1866-7538 |
language | eng |
recordid | cdi_proquest_miscellaneous_1798739472 |
source | SpringerLink Journals - AutoHoldings |
subjects | Earth and Environmental Science Earth Sciences Original Paper |
title | ANN prediction of some geotechnical properties of soil from their index parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANN%20prediction%20of%20some%20geotechnical%20properties%20of%20soil%20from%20their%20index%20parameters&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Tizpa,%20Parichehr&rft.date=2015-05-01&rft.volume=8&rft.issue=5&rft.spage=2911&rft.epage=2920&rft.pages=2911-2920&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-014-1304-3&rft_dat=%3Cproquest_cross%3E1798739472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798739472&rft_id=info:pmid/&rfr_iscdi=true |