Neuro-fuzzy technique to predict air-overpressure induced by blasting

In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby resi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2015-12, Vol.8 (12), p.10937-10950
Hauptverfasser: Jahed Armaghani, Danial, Hajihassani, Mohsen, Sohaei, Houman, Tonnizam Mohamad, Edy, Marto, Aminaton, Motaghedi, Hossein, Moghaddam, Mohammad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10950
container_issue 12
container_start_page 10937
container_title Arabian journal of geosciences
container_volume 8
creator Jahed Armaghani, Danial
Hajihassani, Mohsen
Sohaei, Houman
Tonnizam Mohamad, Edy
Marto, Aminaton
Motaghedi, Hossein
Moghaddam, Mohammad Reza
description In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby residents and structures. Hence, it is a major concern to predict and subsequently control the AOp due to blasting. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) model for prediction of blast-induced AOp in quarry blasting sites. For this purpose, 128 blasting operations were monitored in three quarry sites, Malaysia. Several models were constructed to obtain the optimum model in which each model involved five inputs and one output. Values of maximum charge per delay, powder factor, burden to spacing ratio, stemming length, and distance between monitoring station and blast face were set as input parameters to predict AOp. For comparison purposes, considering the same data, AOp values were predicted through the pre-developed artificial neural network (ANN) model and multiple regression (MR) technique. The results demonstrated the superiority of the ANFIS model to predict AOp compared to other methods. Moreover, results of sensitivity analysis indicated that the maximum charge per delay and powder factor and distance from the blast face are the most influential parameters on AOp.
doi_str_mv 10.1007/s12517-015-1984-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1798737883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1798737883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-31fff594d33f1c49a56994a1d748fcf6b4d3bc7af0be3aca861fec812cb57e083</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwAbj1yCUQL2mTHtE0_kgILnCO0tQZnbpmJA3S9unJVMSRk235Pev5R8g1sFtgTN5FWJQgKYOSQq0E5SdkBqqqqCy5Ov3rAc7JRYwbxirFpJqR1Sum4KlLh8O-GNF-Dt1XwmL0xS5g29mxMF2g_htDnmNMAYtuaJPFtmj2RdObOHbD-pKcOdNHvPqtc_LxsHpfPtGXt8fn5f0LNQLESDk458patJw7sKI2ZVXXwkArhXLWVU3eNFYaxxrkxhpVgUOrYGGbUiJTfE5upru74HPMOOptFy32vRnQp6hB1kpyqRTPUpikNvgYAzq9C93WhL0Gpo_I9IRMZ2T6iEwfPYvJE7N2WGPQG5_CkD_6x_QDOiNwHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798737883</pqid></control><display><type>article</type><title>Neuro-fuzzy technique to predict air-overpressure induced by blasting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jahed Armaghani, Danial ; Hajihassani, Mohsen ; Sohaei, Houman ; Tonnizam Mohamad, Edy ; Marto, Aminaton ; Motaghedi, Hossein ; Moghaddam, Mohammad Reza</creator><creatorcontrib>Jahed Armaghani, Danial ; Hajihassani, Mohsen ; Sohaei, Houman ; Tonnizam Mohamad, Edy ; Marto, Aminaton ; Motaghedi, Hossein ; Moghaddam, Mohammad Reza</creatorcontrib><description>In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby residents and structures. Hence, it is a major concern to predict and subsequently control the AOp due to blasting. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) model for prediction of blast-induced AOp in quarry blasting sites. For this purpose, 128 blasting operations were monitored in three quarry sites, Malaysia. Several models were constructed to obtain the optimum model in which each model involved five inputs and one output. Values of maximum charge per delay, powder factor, burden to spacing ratio, stemming length, and distance between monitoring station and blast face were set as input parameters to predict AOp. For comparison purposes, considering the same data, AOp values were predicted through the pre-developed artificial neural network (ANN) model and multiple regression (MR) technique. The results demonstrated the superiority of the ANFIS model to predict AOp compared to other methods. Moreover, results of sensitivity analysis indicated that the maximum charge per delay and powder factor and distance from the blast face are the most influential parameters on AOp.</description><identifier>ISSN: 1866-7511</identifier><identifier>EISSN: 1866-7538</identifier><identifier>DOI: 10.1007/s12517-015-1984-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Earth and Environmental Science ; Earth Sciences ; Original Paper</subject><ispartof>Arabian journal of geosciences, 2015-12, Vol.8 (12), p.10937-10950</ispartof><rights>Saudi Society for Geosciences 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-31fff594d33f1c49a56994a1d748fcf6b4d3bc7af0be3aca861fec812cb57e083</citedby><cites>FETCH-LOGICAL-a414t-31fff594d33f1c49a56994a1d748fcf6b4d3bc7af0be3aca861fec812cb57e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12517-015-1984-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12517-015-1984-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Jahed Armaghani, Danial</creatorcontrib><creatorcontrib>Hajihassani, Mohsen</creatorcontrib><creatorcontrib>Sohaei, Houman</creatorcontrib><creatorcontrib>Tonnizam Mohamad, Edy</creatorcontrib><creatorcontrib>Marto, Aminaton</creatorcontrib><creatorcontrib>Motaghedi, Hossein</creatorcontrib><creatorcontrib>Moghaddam, Mohammad Reza</creatorcontrib><title>Neuro-fuzzy technique to predict air-overpressure induced by blasting</title><title>Arabian journal of geosciences</title><addtitle>Arab J Geosci</addtitle><description>In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby residents and structures. Hence, it is a major concern to predict and subsequently control the AOp due to blasting. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) model for prediction of blast-induced AOp in quarry blasting sites. For this purpose, 128 blasting operations were monitored in three quarry sites, Malaysia. Several models were constructed to obtain the optimum model in which each model involved five inputs and one output. Values of maximum charge per delay, powder factor, burden to spacing ratio, stemming length, and distance between monitoring station and blast face were set as input parameters to predict AOp. For comparison purposes, considering the same data, AOp values were predicted through the pre-developed artificial neural network (ANN) model and multiple regression (MR) technique. The results demonstrated the superiority of the ANFIS model to predict AOp compared to other methods. Moreover, results of sensitivity analysis indicated that the maximum charge per delay and powder factor and distance from the blast face are the most influential parameters on AOp.</description><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Original Paper</subject><issn>1866-7511</issn><issn>1866-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwAbj1yCUQL2mTHtE0_kgILnCO0tQZnbpmJA3S9unJVMSRk235Pev5R8g1sFtgTN5FWJQgKYOSQq0E5SdkBqqqqCy5Ov3rAc7JRYwbxirFpJqR1Sum4KlLh8O-GNF-Dt1XwmL0xS5g29mxMF2g_htDnmNMAYtuaJPFtmj2RdObOHbD-pKcOdNHvPqtc_LxsHpfPtGXt8fn5f0LNQLESDk458patJw7sKI2ZVXXwkArhXLWVU3eNFYaxxrkxhpVgUOrYGGbUiJTfE5upru74HPMOOptFy32vRnQp6hB1kpyqRTPUpikNvgYAzq9C93WhL0Gpo_I9IRMZ2T6iEwfPYvJE7N2WGPQG5_CkD_6x_QDOiNwHQ</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Jahed Armaghani, Danial</creator><creator>Hajihassani, Mohsen</creator><creator>Sohaei, Houman</creator><creator>Tonnizam Mohamad, Edy</creator><creator>Marto, Aminaton</creator><creator>Motaghedi, Hossein</creator><creator>Moghaddam, Mohammad Reza</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20151201</creationdate><title>Neuro-fuzzy technique to predict air-overpressure induced by blasting</title><author>Jahed Armaghani, Danial ; Hajihassani, Mohsen ; Sohaei, Houman ; Tonnizam Mohamad, Edy ; Marto, Aminaton ; Motaghedi, Hossein ; Moghaddam, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-31fff594d33f1c49a56994a1d748fcf6b4d3bc7af0be3aca861fec812cb57e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahed Armaghani, Danial</creatorcontrib><creatorcontrib>Hajihassani, Mohsen</creatorcontrib><creatorcontrib>Sohaei, Houman</creatorcontrib><creatorcontrib>Tonnizam Mohamad, Edy</creatorcontrib><creatorcontrib>Marto, Aminaton</creatorcontrib><creatorcontrib>Motaghedi, Hossein</creatorcontrib><creatorcontrib>Moghaddam, Mohammad Reza</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Arabian journal of geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahed Armaghani, Danial</au><au>Hajihassani, Mohsen</au><au>Sohaei, Houman</au><au>Tonnizam Mohamad, Edy</au><au>Marto, Aminaton</au><au>Motaghedi, Hossein</au><au>Moghaddam, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy technique to predict air-overpressure induced by blasting</atitle><jtitle>Arabian journal of geosciences</jtitle><stitle>Arab J Geosci</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>8</volume><issue>12</issue><spage>10937</spage><epage>10950</epage><pages>10937-10950</pages><issn>1866-7511</issn><eissn>1866-7538</eissn><abstract>In addition to all benefits of blasting in mining and civil engineering applications, blasting has some undesirable impacts on surrounding areas. Blast-induced air-overpressure (AOp) is one of the most important environmental impacts of blasting operation which may cause severe damage to nearby residents and structures. Hence, it is a major concern to predict and subsequently control the AOp due to blasting. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) model for prediction of blast-induced AOp in quarry blasting sites. For this purpose, 128 blasting operations were monitored in three quarry sites, Malaysia. Several models were constructed to obtain the optimum model in which each model involved five inputs and one output. Values of maximum charge per delay, powder factor, burden to spacing ratio, stemming length, and distance between monitoring station and blast face were set as input parameters to predict AOp. For comparison purposes, considering the same data, AOp values were predicted through the pre-developed artificial neural network (ANN) model and multiple regression (MR) technique. The results demonstrated the superiority of the ANFIS model to predict AOp compared to other methods. Moreover, results of sensitivity analysis indicated that the maximum charge per delay and powder factor and distance from the blast face are the most influential parameters on AOp.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12517-015-1984-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-7511
ispartof Arabian journal of geosciences, 2015-12, Vol.8 (12), p.10937-10950
issn 1866-7511
1866-7538
language eng
recordid cdi_proquest_miscellaneous_1798737883
source SpringerLink Journals - AutoHoldings
subjects Earth and Environmental Science
Earth Sciences
Original Paper
title Neuro-fuzzy technique to predict air-overpressure induced by blasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20technique%20to%20predict%20air-overpressure%20induced%20by%20blasting&rft.jtitle=Arabian%20journal%20of%20geosciences&rft.au=Jahed%20Armaghani,%20Danial&rft.date=2015-12-01&rft.volume=8&rft.issue=12&rft.spage=10937&rft.epage=10950&rft.pages=10937-10950&rft.issn=1866-7511&rft.eissn=1866-7538&rft_id=info:doi/10.1007/s12517-015-1984-3&rft_dat=%3Cproquest_cross%3E1798737883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798737883&rft_id=info:pmid/&rfr_iscdi=true