Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum

Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2016-06, Vol.210 (4), p.1244-1258
Hauptverfasser: Andresen, Elisa, Kappel, Sophie, Stärk, Hans‐Joachim, Riegger, Ulrike, Borovec, Jakub, Mattusch, Jürgen, Heinz, Andrea, Schmelzer, Christian E. H., Matoušková, Šárka, Dickinson, Bryan, Küpper, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 4
container_start_page 1244
container_title The New phytologist
container_volume 210
creator Andresen, Elisa
Kappel, Sophie
Stärk, Hans‐Joachim
Riegger, Ulrike
Borovec, Jakub
Mattusch, Jürgen
Heinz, Andrea
Schmelzer, Christian E. H.
Matoušková, Šárka
Dickinson, Bryan
Küpper, Hendrik
description Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including naturelike light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as F v/F m, light-acclimated PSII activity ΦPSII, and total Chl). Trimers of the PSII lightharvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.
doi_str_mv 10.1111/nph.13840
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1798734306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.210.4.1244</jstor_id><sourcerecordid>newphytologist.210.4.1244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4600-ffc14c018842d9a5e224f71f2573645e92af8c8f7104dd0b39c9d503d1842e693</originalsourceid><addsrcrecordid>eNp1kcFu1DAURS1ERYfCgh9AltjAIlPbcZxkiUZAkSraRZHYRR77ZcYjx05tZ0r-iM_EM9N2gYQ3lp_Pvbp6F6F3lCxpPpdu3C5p2XDyAi0oF23R0LJ-iRaEsKYQXPw6R69j3BFC2kqwV-iciQxzIhboz0rqwUwDTv63USbN2Lg9xGQ2MoHGMuG0BTxu52i89RujpMXSabw2_jg8vC3swUY8OQ0Bg9ub4N0ALklrZxwgf0uXsPJOm2S8y2Q0bnM0lveTTEbhwWuweLQHcAVBpoO7tTmXhgFCnIY36KyXNsLbx_sC_fz65W51VVzffPu--nxdKC4IKfpeUa4IbRrOdCsrYIz3Ne1ZVZeCV9Ay2TeqySPCtSbrslWtrkipaRaAaMsL9PHkOwZ_P-VNdIOJCmyOBn6KHa3bpi55SURGP_yD7vwUXE6XqaauCOOMZOrTiVLBxxig78ZgBhnmjpLuUF-X6-uO9WX2_aPjtB5AP5NPfWXg8gQ8GAvz_526H7dXT5bLk2IXkw_PCgcPecPp2GkOzrID7yjjvPwLfPq5QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787502420</pqid></control><display><type>article</type><title>Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Andresen, Elisa ; Kappel, Sophie ; Stärk, Hans‐Joachim ; Riegger, Ulrike ; Borovec, Jakub ; Mattusch, Jürgen ; Heinz, Andrea ; Schmelzer, Christian E. H. ; Matoušková, Šárka ; Dickinson, Bryan ; Küpper, Hendrik</creator><creatorcontrib>Andresen, Elisa ; Kappel, Sophie ; Stärk, Hans‐Joachim ; Riegger, Ulrike ; Borovec, Jakub ; Mattusch, Jürgen ; Heinz, Andrea ; Schmelzer, Christian E. H. ; Matoušková, Šárka ; Dickinson, Bryan ; Küpper, Hendrik</creatorcontrib><description>Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including naturelike light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as F v/F m, light-acclimated PSII activity ΦPSII, and total Chl). Trimers of the PSII lightharvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13840</identifier><identifier>PMID: 26840406</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Cadmium (Cd) ; Cadmium - toxicity ; Ceratophyllum demersum ; environmentally relevant ; Hydrogen Peroxide - metabolism ; Light ; light‐harvesting complexes (LHCs) ; macrophyte ; Magnoliopsida - drug effects ; Magnoliopsida - physiology ; Magnoliopsida - radiation effects ; Photosynthesis ; Photosystem II Protein Complex - metabolism ; Reactive Oxygen Species - metabolism ; Superoxides - metabolism ; toxic metals ; toxicity</subject><ispartof>The New phytologist, 2016-06, Vol.210 (4), p.1244-1258</ispartof><rights>2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</rights><rights>Copyright © 2016 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4600-ffc14c018842d9a5e224f71f2573645e92af8c8f7104dd0b39c9d503d1842e693</citedby><cites>FETCH-LOGICAL-c4600-ffc14c018842d9a5e224f71f2573645e92af8c8f7104dd0b39c9d503d1842e693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.210.4.1244$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.210.4.1244$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26840406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andresen, Elisa</creatorcontrib><creatorcontrib>Kappel, Sophie</creatorcontrib><creatorcontrib>Stärk, Hans‐Joachim</creatorcontrib><creatorcontrib>Riegger, Ulrike</creatorcontrib><creatorcontrib>Borovec, Jakub</creatorcontrib><creatorcontrib>Mattusch, Jürgen</creatorcontrib><creatorcontrib>Heinz, Andrea</creatorcontrib><creatorcontrib>Schmelzer, Christian E. H.</creatorcontrib><creatorcontrib>Matoušková, Šárka</creatorcontrib><creatorcontrib>Dickinson, Bryan</creatorcontrib><creatorcontrib>Küpper, Hendrik</creatorcontrib><title>Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including naturelike light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as F v/F m, light-acclimated PSII activity ΦPSII, and total Chl). Trimers of the PSII lightharvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.</description><subject>Cadmium (Cd)</subject><subject>Cadmium - toxicity</subject><subject>Ceratophyllum demersum</subject><subject>environmentally relevant</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Light</subject><subject>light‐harvesting complexes (LHCs)</subject><subject>macrophyte</subject><subject>Magnoliopsida - drug effects</subject><subject>Magnoliopsida - physiology</subject><subject>Magnoliopsida - radiation effects</subject><subject>Photosynthesis</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Superoxides - metabolism</subject><subject>toxic metals</subject><subject>toxicity</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAURS1ERYfCgh9AltjAIlPbcZxkiUZAkSraRZHYRR77ZcYjx05tZ0r-iM_EM9N2gYQ3lp_Pvbp6F6F3lCxpPpdu3C5p2XDyAi0oF23R0LJ-iRaEsKYQXPw6R69j3BFC2kqwV-iciQxzIhboz0rqwUwDTv63USbN2Lg9xGQ2MoHGMuG0BTxu52i89RujpMXSabw2_jg8vC3swUY8OQ0Bg9ub4N0ALklrZxwgf0uXsPJOm2S8y2Q0bnM0lveTTEbhwWuweLQHcAVBpoO7tTmXhgFCnIY36KyXNsLbx_sC_fz65W51VVzffPu--nxdKC4IKfpeUa4IbRrOdCsrYIz3Ne1ZVZeCV9Ay2TeqySPCtSbrslWtrkipaRaAaMsL9PHkOwZ_P-VNdIOJCmyOBn6KHa3bpi55SURGP_yD7vwUXE6XqaauCOOMZOrTiVLBxxig78ZgBhnmjpLuUF-X6-uO9WX2_aPjtB5AP5NPfWXg8gQ8GAvz_526H7dXT5bLk2IXkw_PCgcPecPp2GkOzrID7yjjvPwLfPq5QA</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Andresen, Elisa</creator><creator>Kappel, Sophie</creator><creator>Stärk, Hans‐Joachim</creator><creator>Riegger, Ulrike</creator><creator>Borovec, Jakub</creator><creator>Mattusch, Jürgen</creator><creator>Heinz, Andrea</creator><creator>Schmelzer, Christian E. H.</creator><creator>Matoušková, Šárka</creator><creator>Dickinson, Bryan</creator><creator>Küpper, Hendrik</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TV</scope></search><sort><creationdate>20160601</creationdate><title>Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum</title><author>Andresen, Elisa ; Kappel, Sophie ; Stärk, Hans‐Joachim ; Riegger, Ulrike ; Borovec, Jakub ; Mattusch, Jürgen ; Heinz, Andrea ; Schmelzer, Christian E. H. ; Matoušková, Šárka ; Dickinson, Bryan ; Küpper, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4600-ffc14c018842d9a5e224f71f2573645e92af8c8f7104dd0b39c9d503d1842e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cadmium (Cd)</topic><topic>Cadmium - toxicity</topic><topic>Ceratophyllum demersum</topic><topic>environmentally relevant</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Light</topic><topic>light‐harvesting complexes (LHCs)</topic><topic>macrophyte</topic><topic>Magnoliopsida - drug effects</topic><topic>Magnoliopsida - physiology</topic><topic>Magnoliopsida - radiation effects</topic><topic>Photosynthesis</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Superoxides - metabolism</topic><topic>toxic metals</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andresen, Elisa</creatorcontrib><creatorcontrib>Kappel, Sophie</creatorcontrib><creatorcontrib>Stärk, Hans‐Joachim</creatorcontrib><creatorcontrib>Riegger, Ulrike</creatorcontrib><creatorcontrib>Borovec, Jakub</creatorcontrib><creatorcontrib>Mattusch, Jürgen</creatorcontrib><creatorcontrib>Heinz, Andrea</creatorcontrib><creatorcontrib>Schmelzer, Christian E. H.</creatorcontrib><creatorcontrib>Matoušková, Šárka</creatorcontrib><creatorcontrib>Dickinson, Bryan</creatorcontrib><creatorcontrib>Küpper, Hendrik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Pollution Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andresen, Elisa</au><au>Kappel, Sophie</au><au>Stärk, Hans‐Joachim</au><au>Riegger, Ulrike</au><au>Borovec, Jakub</au><au>Mattusch, Jürgen</au><au>Heinz, Andrea</au><au>Schmelzer, Christian E. H.</au><au>Matoušková, Šárka</au><au>Dickinson, Bryan</au><au>Küpper, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>210</volume><issue>4</issue><spage>1244</spage><epage>1258</epage><pages>1244-1258</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmentally relevant conditions, including naturelike light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as F v/F m, light-acclimated PSII activity ΦPSII, and total Chl). Trimers of the PSII lightharvesting complexes (LHCIIs) decreased more than LHC monomers and detection of Cd in the monomers suggested replacement of magnesium (Mg) by Cd in the Chl molecules. As a consequence of dysfunctional photosynthesis and energy dissipation, reactive oxygen species (superoxide and hydrogen peroxide) appeared. Cadmium had negative effects on macrophytes at much lower concentrations than reported previously, emphasizing the importance of studies applying environmentally relevant conditions. A chain of inhibition events could be established.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>26840406</pmid><doi>10.1111/nph.13840</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2016-06, Vol.210 (4), p.1244-1258
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1798734306
source MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals
subjects Cadmium (Cd)
Cadmium - toxicity
Ceratophyllum demersum
environmentally relevant
Hydrogen Peroxide - metabolism
Light
light‐harvesting complexes (LHCs)
macrophyte
Magnoliopsida - drug effects
Magnoliopsida - physiology
Magnoliopsida - radiation effects
Photosynthesis
Photosystem II Protein Complex - metabolism
Reactive Oxygen Species - metabolism
Superoxides - metabolism
toxic metals
toxicity
title Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadmium%20toxicity%20investigated%20at%20the%20physiological%20and%20biophysical%20levels%20under%20environmentally%20relevant%20conditions%20using%20the%20aquatic%20model%20plant%20Ceratophyllum%20demersum&rft.jtitle=The%20New%20phytologist&rft.au=Andresen,%20Elisa&rft.date=2016-06-01&rft.volume=210&rft.issue=4&rft.spage=1244&rft.epage=1258&rft.pages=1244-1258&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13840&rft_dat=%3Cjstor_proqu%3Enewphytologist.210.4.1244%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787502420&rft_id=info:pmid/26840406&rft_jstor_id=newphytologist.210.4.1244&rfr_iscdi=true