CRISPR Cas9 in Genome Editing and Beyond

The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily prog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of biochemistry 2016-06, Vol.85 (1), p.227-264
Hauptverfasser: Wang, Haifeng, La Russa, Marie, Qi, Lei S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 227
container_title Annual review of biochemistry
container_volume 85
creator Wang, Haifeng
La Russa, Marie
Qi, Lei S
description The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR Cas9 technology offers.
doi_str_mv 10.1146/annurev-biochem-060815-014607
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1797235375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811895139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a626t-d99c66c7bc510b3333d4ee793ad8dcfe59ef6482217c57720d86680c9a3a99313</originalsourceid><addsrcrecordid>eNqVkE1LAzEQhoMotlb_giyI0MvqZPO1OXiwpdZCQal6DmmS6pZutm66Sv-9KVs9eBFzGcg88w7zIHSJ4Qpjyq-1903tPtJ5UZk3V6bAIccshdgDcYC6mFGWUgbyEHUBOE9p_OmgkxCWAEAkzY5RJxOYspySLuoPZ5Onx1ky1EEmhU_GzlelS0a22BT-NdHeJgO3rbw9RUcLvQrubF976OVu9Dy8T6cP48nwdppqnvFNaqU0nBsxNwzDnMRnqXNCEm1zaxaOSbfgNM8yLAwTIgObc56DkZpoKQkmPdRvc9d19d64sFFlEYxbrbR3VRMUzjHOJcNE_o0KKTLCiGARvfiFLqum9vGQHSUh40B4pG5aytRVCLVbqHVdlLreKgxqZ1_t7au9fdXaV639OH--39LMS2d_pr91R2DQArscvYpJhfsM_9zyBV_pl8k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799026036</pqid></control><display><type>article</type><title>CRISPR Cas9 in Genome Editing and Beyond</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Wang, Haifeng ; La Russa, Marie ; Qi, Lei S</creator><creatorcontrib>Wang, Haifeng ; La Russa, Marie ; Qi, Lei S</creatorcontrib><description>The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR Cas9 technology offers.</description><identifier>ISSN: 0066-4154</identifier><identifier>EISSN: 1545-4509</identifier><identifier>DOI: 10.1146/annurev-biochem-060815-014607</identifier><identifier>PMID: 27145843</identifier><identifier>CODEN: ARBOAW</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Base Pairing ; Biochemistry ; Cas9 structure ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR applications ; CRISPR-Associated Protein 9 ; CRISPR-Cas Systems ; dCas9 ; Deoxyribonucleic acid ; DNA ; DNA Cleavage ; DNA Repair ; Endonucleases - genetics ; Endonucleases - metabolism ; Epigenesis, Genetic ; epigenetic regulation ; Epigenetics ; Gene Editing - methods ; gene regulation ; Gene Targeting ; Genome, Human ; Genomes ; genomic imaging ; Humans ; Immune system ; Molecular Imaging ; Protein Engineering ; Protein Structure, Secondary ; Proteins ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems - genetics ; RNA, Guide, CRISPR-Cas Systems - metabolism</subject><ispartof>Annual review of biochemistry, 2016-06, Vol.85 (1), p.227-264</ispartof><rights>Copyright © 2016 by Annual Reviews. All rights reserved 2016</rights><rights>Copyright Annual Reviews, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a626t-d99c66c7bc510b3333d4ee793ad8dcfe59ef6482217c57720d86680c9a3a99313</citedby><cites>FETCH-LOGICAL-a626t-d99c66c7bc510b3333d4ee793ad8dcfe59ef6482217c57720d86680c9a3a99313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biochem-060815-014607?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-biochem-060815-014607$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,776,780,4168,27901,27902,77997,77998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27145843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>La Russa, Marie</creatorcontrib><creatorcontrib>Qi, Lei S</creatorcontrib><title>CRISPR Cas9 in Genome Editing and Beyond</title><title>Annual review of biochemistry</title><addtitle>Annu Rev Biochem</addtitle><description>The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR Cas9 technology offers.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Pairing</subject><subject>Biochemistry</subject><subject>Cas9 structure</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR applications</subject><subject>CRISPR-Associated Protein 9</subject><subject>CRISPR-Cas Systems</subject><subject>dCas9</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Cleavage</subject><subject>DNA Repair</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Epigenesis, Genetic</subject><subject>epigenetic regulation</subject><subject>Epigenetics</subject><subject>Gene Editing - methods</subject><subject>gene regulation</subject><subject>Gene Targeting</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>genomic imaging</subject><subject>Humans</subject><subject>Immune system</subject><subject>Molecular Imaging</subject><subject>Protein Engineering</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems - genetics</subject><subject>RNA, Guide, CRISPR-Cas Systems - metabolism</subject><issn>0066-4154</issn><issn>1545-4509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkE1LAzEQhoMotlb_giyI0MvqZPO1OXiwpdZCQal6DmmS6pZutm66Sv-9KVs9eBFzGcg88w7zIHSJ4Qpjyq-1903tPtJ5UZk3V6bAIccshdgDcYC6mFGWUgbyEHUBOE9p_OmgkxCWAEAkzY5RJxOYspySLuoPZ5Onx1ky1EEmhU_GzlelS0a22BT-NdHeJgO3rbw9RUcLvQrubF976OVu9Dy8T6cP48nwdppqnvFNaqU0nBsxNwzDnMRnqXNCEm1zaxaOSbfgNM8yLAwTIgObc56DkZpoKQkmPdRvc9d19d64sFFlEYxbrbR3VRMUzjHOJcNE_o0KKTLCiGARvfiFLqum9vGQHSUh40B4pG5aytRVCLVbqHVdlLreKgxqZ1_t7au9fdXaV639OH--39LMS2d_pr91R2DQArscvYpJhfsM_9zyBV_pl8k</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Wang, Haifeng</creator><creator>La Russa, Marie</creator><creator>Qi, Lei S</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160602</creationdate><title>CRISPR Cas9 in Genome Editing and Beyond</title><author>Wang, Haifeng ; La Russa, Marie ; Qi, Lei S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a626t-d99c66c7bc510b3333d4ee793ad8dcfe59ef6482217c57720d86680c9a3a99313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Pairing</topic><topic>Biochemistry</topic><topic>Cas9 structure</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR applications</topic><topic>CRISPR-Associated Protein 9</topic><topic>CRISPR-Cas Systems</topic><topic>dCas9</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Cleavage</topic><topic>DNA Repair</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Epigenesis, Genetic</topic><topic>epigenetic regulation</topic><topic>Epigenetics</topic><topic>Gene Editing - methods</topic><topic>gene regulation</topic><topic>Gene Targeting</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>genomic imaging</topic><topic>Humans</topic><topic>Immune system</topic><topic>Molecular Imaging</topic><topic>Protein Engineering</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems - genetics</topic><topic>RNA, Guide, CRISPR-Cas Systems - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haifeng</creatorcontrib><creatorcontrib>La Russa, Marie</creatorcontrib><creatorcontrib>Qi, Lei S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haifeng</au><au>La Russa, Marie</au><au>Qi, Lei S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR Cas9 in Genome Editing and Beyond</atitle><jtitle>Annual review of biochemistry</jtitle><addtitle>Annu Rev Biochem</addtitle><date>2016-06-02</date><risdate>2016</risdate><volume>85</volume><issue>1</issue><spage>227</spage><epage>264</epage><pages>227-264</pages><issn>0066-4154</issn><eissn>1545-4509</eissn><coden>ARBOAW</coden><abstract>The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR Cas9 technology offers.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>27145843</pmid><doi>10.1146/annurev-biochem-060815-014607</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-4154
ispartof Annual review of biochemistry, 2016-06, Vol.85 (1), p.227-264
issn 0066-4154
1545-4509
language eng
recordid cdi_proquest_miscellaneous_1797235375
source Annual Reviews Complete A-Z List; MEDLINE
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Pairing
Biochemistry
Cas9 structure
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR applications
CRISPR-Associated Protein 9
CRISPR-Cas Systems
dCas9
Deoxyribonucleic acid
DNA
DNA Cleavage
DNA Repair
Endonucleases - genetics
Endonucleases - metabolism
Epigenesis, Genetic
epigenetic regulation
Epigenetics
Gene Editing - methods
gene regulation
Gene Targeting
Genome, Human
Genomes
genomic imaging
Humans
Immune system
Molecular Imaging
Protein Engineering
Protein Structure, Secondary
Proteins
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems - genetics
RNA, Guide, CRISPR-Cas Systems - metabolism
title CRISPR Cas9 in Genome Editing and Beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR%20Cas9%20in%20Genome%20Editing%20and%20Beyond&rft.jtitle=Annual%20review%20of%20biochemistry&rft.au=Wang,%20Haifeng&rft.date=2016-06-02&rft.volume=85&rft.issue=1&rft.spage=227&rft.epage=264&rft.pages=227-264&rft.issn=0066-4154&rft.eissn=1545-4509&rft.coden=ARBOAW&rft_id=info:doi/10.1146/annurev-biochem-060815-014607&rft_dat=%3Cproquest_pubme%3E1811895139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799026036&rft_id=info:pmid/27145843&rfr_iscdi=true