In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP

Summary Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐depende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2004-04, Vol.52 (1), p.39-52
Hauptverfasser: Luo, Qin, Rauch, Marcus, K. Marr, Alexandra, Müller‐Altrock, Stefanie, Goebel, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 39
container_title Molecular microbiology
container_volume 52
creator Luo, Qin
Rauch, Marcus
K. Marr, Alexandra
Müller‐Altrock, Stefanie
Goebel, Werner
description Summary Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.
doi_str_mv 10.1111/j.1365-2958.2003.03960.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17965101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17965101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EosvCKyCLA7cEO84_HzhUq9KutBU9FImb5Tjj4lViBztZmhuPwAP1aXgSnO6KSpzwxZ6Z3zcz8ocQpiSl8XzYp5SVRZLxok4zQlhKGC9Jev8Mrf4WnqMV4QVJWJ19PUOvQtgTQhkp2Ut0RguS85rwFXrYWnwwo3d49NIG5c0wGmex03j8BnhnwgjeSNw769Q8ujuwEKLCTx1YBfgYG9ttsLQt7ocOeziA7AJ2B_CdHAZj7_CN1-e_f_5qYQDbgh0f4Zgw9ik1eNe7OC3EyTISHnBrtAYfi0Z23YylGs1BjtDiZsaXtzev0QsdJ8Gb071GXz5d3G6ukt3ny-3mfJeovGIkobwqSlKzrC6bSrdN02ZNwYnMuJa84KpQTcnLkudS6abiOuecAte8JZJlUcnW6P2xb1zx-wRhFL0JCrpOWnBTELTiZUHj767Ru3_AvZu8jbsJuiA0y1mE6iOkvAvBgxaDN730s6BELPaKvVhcFIuLYrFXPNor7qP07an_1PTQPglPfkbg4xH4YTqY_7uxuL7eLi_2B3bTubg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196511243</pqid></control><display><type>article</type><title>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Luo, Qin ; Rauch, Marcus ; K. Marr, Alexandra ; Müller‐Altrock, Stefanie ; Goebel, Werner</creator><creatorcontrib>Luo, Qin ; Rauch, Marcus ; K. Marr, Alexandra ; Müller‐Altrock, Stefanie ; Goebel, Werner</creatorcontrib><description>Summary Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2003.03960.x</identifier><identifier>PMID: 15049809</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - physiology ; Bacterial Toxins - genetics ; Base Sequence ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Guanosine Triphosphate - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - physiology ; Hemolysin Proteins ; Listeria monocytogenes ; Listeria monocytogenes - genetics ; Listeria monocytogenes - pathogenicity ; Listeria monocytogenes - physiology ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Metalloendopeptidases - genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Peptide Termination Factors ; Promoter Regions, Genetic ; Sequence Deletion ; Trans-Activators - physiology ; Transcription Factors - physiology ; Transcription Initiation Site ; Transcription, Genetic ; Virulence Factors - genetics</subject><ispartof>Molecular microbiology, 2004-04, Vol.52 (1), p.39-52</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</citedby><cites>FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2003.03960.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2003.03960.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15049809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Qin</creatorcontrib><creatorcontrib>Rauch, Marcus</creatorcontrib><creatorcontrib>K. Marr, Alexandra</creatorcontrib><creatorcontrib>Müller‐Altrock, Stefanie</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><title>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - physiology</subject><subject>Bacterial Toxins - genetics</subject><subject>Base Sequence</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - physiology</subject><subject>Hemolysin Proteins</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Listeria monocytogenes - physiology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Metalloendopeptidases - genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Peptide Termination Factors</subject><subject>Promoter Regions, Genetic</subject><subject>Sequence Deletion</subject><subject>Trans-Activators - physiology</subject><subject>Transcription Factors - physiology</subject><subject>Transcription Initiation Site</subject><subject>Transcription, Genetic</subject><subject>Virulence Factors - genetics</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EosvCKyCLA7cEO84_HzhUq9KutBU9FImb5Tjj4lViBztZmhuPwAP1aXgSnO6KSpzwxZ6Z3zcz8ocQpiSl8XzYp5SVRZLxok4zQlhKGC9Jev8Mrf4WnqMV4QVJWJ19PUOvQtgTQhkp2Ut0RguS85rwFXrYWnwwo3d49NIG5c0wGmex03j8BnhnwgjeSNw769Q8ujuwEKLCTx1YBfgYG9ttsLQt7ocOeziA7AJ2B_CdHAZj7_CN1-e_f_5qYQDbgh0f4Zgw9ik1eNe7OC3EyTISHnBrtAYfi0Z23YylGs1BjtDiZsaXtzev0QsdJ8Gb071GXz5d3G6ukt3ny-3mfJeovGIkobwqSlKzrC6bSrdN02ZNwYnMuJa84KpQTcnLkudS6abiOuecAte8JZJlUcnW6P2xb1zx-wRhFL0JCrpOWnBTELTiZUHj767Ru3_AvZu8jbsJuiA0y1mE6iOkvAvBgxaDN730s6BELPaKvVhcFIuLYrFXPNor7qP07an_1PTQPglPfkbg4xH4YTqY_7uxuL7eLi_2B3bTubg</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Luo, Qin</creator><creator>Rauch, Marcus</creator><creator>K. Marr, Alexandra</creator><creator>Müller‐Altrock, Stefanie</creator><creator>Goebel, Werner</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200404</creationdate><title>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</title><author>Luo, Qin ; Rauch, Marcus ; K. Marr, Alexandra ; Müller‐Altrock, Stefanie ; Goebel, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - physiology</topic><topic>Bacterial Toxins - genetics</topic><topic>Base Sequence</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - physiology</topic><topic>Hemolysin Proteins</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Listeria monocytogenes - physiology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Metalloendopeptidases - genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Peptide Termination Factors</topic><topic>Promoter Regions, Genetic</topic><topic>Sequence Deletion</topic><topic>Trans-Activators - physiology</topic><topic>Transcription Factors - physiology</topic><topic>Transcription Initiation Site</topic><topic>Transcription, Genetic</topic><topic>Virulence Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qin</creatorcontrib><creatorcontrib>Rauch, Marcus</creatorcontrib><creatorcontrib>K. Marr, Alexandra</creatorcontrib><creatorcontrib>Müller‐Altrock, Stefanie</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qin</au><au>Rauch, Marcus</au><au>K. Marr, Alexandra</au><au>Müller‐Altrock, Stefanie</au><au>Goebel, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-04</date><risdate>2004</risdate><volume>52</volume><issue>1</issue><spage>39</spage><epage>52</epage><pages>39-52</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15049809</pmid><doi>10.1111/j.1365-2958.2003.03960.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2004-04, Vol.52 (1), p.39-52
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_17965101
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Bacterial Proteins - genetics
Bacterial Proteins - physiology
Bacterial Toxins - genetics
Base Sequence
Gene Expression Regulation, Bacterial
Genes, Bacterial
Guanosine Triphosphate - metabolism
Heat-Shock Proteins - genetics
Heat-Shock Proteins - physiology
Hemolysin Proteins
Listeria monocytogenes
Listeria monocytogenes - genetics
Listeria monocytogenes - pathogenicity
Listeria monocytogenes - physiology
Membrane Proteins - genetics
Membrane Proteins - physiology
Metalloendopeptidases - genetics
Molecular Sequence Data
Mutagenesis, Site-Directed
Peptide Termination Factors
Promoter Regions, Genetic
Sequence Deletion
Trans-Activators - physiology
Transcription Factors - physiology
Transcription Initiation Site
Transcription, Genetic
Virulence Factors - genetics
title In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20transcription%20of%20the%20Listeria%20monocytogenes%20virulence%20genes%20inlC%20and%20mpl%20reveals%20overlapping%20PrfA%E2%80%90dependent%20and%20%E2%80%90independent%20promoters%20that%20are%20differentially%20activated%20by%20GTP&rft.jtitle=Molecular%20microbiology&rft.au=Luo,%20Qin&rft.date=2004-04&rft.volume=52&rft.issue=1&rft.spage=39&rft.epage=52&rft.pages=39-52&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2003.03960.x&rft_dat=%3Cproquest_cross%3E17965101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196511243&rft_id=info:pmid/15049809&rfr_iscdi=true