In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP
Summary Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐depende...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2004-04, Vol.52 (1), p.39-52 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Molecular microbiology |
container_volume | 52 |
creator | Luo, Qin Rauch, Marcus K. Marr, Alexandra Müller‐Altrock, Stefanie Goebel, Werner |
description | Summary
Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8. |
doi_str_mv | 10.1111/j.1365-2958.2003.03960.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17965101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17965101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EosvCKyCLA7cEO84_HzhUq9KutBU9FImb5Tjj4lViBztZmhuPwAP1aXgSnO6KSpzwxZ6Z3zcz8ocQpiSl8XzYp5SVRZLxok4zQlhKGC9Jev8Mrf4WnqMV4QVJWJ19PUOvQtgTQhkp2Ut0RguS85rwFXrYWnwwo3d49NIG5c0wGmex03j8BnhnwgjeSNw769Q8ujuwEKLCTx1YBfgYG9ttsLQt7ocOeziA7AJ2B_CdHAZj7_CN1-e_f_5qYQDbgh0f4Zgw9ik1eNe7OC3EyTISHnBrtAYfi0Z23YylGs1BjtDiZsaXtzev0QsdJ8Gb071GXz5d3G6ukt3ny-3mfJeovGIkobwqSlKzrC6bSrdN02ZNwYnMuJa84KpQTcnLkudS6abiOuecAte8JZJlUcnW6P2xb1zx-wRhFL0JCrpOWnBTELTiZUHj767Ru3_AvZu8jbsJuiA0y1mE6iOkvAvBgxaDN730s6BELPaKvVhcFIuLYrFXPNor7qP07an_1PTQPglPfkbg4xH4YTqY_7uxuL7eLi_2B3bTubg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196511243</pqid></control><display><type>article</type><title>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Luo, Qin ; Rauch, Marcus ; K. Marr, Alexandra ; Müller‐Altrock, Stefanie ; Goebel, Werner</creator><creatorcontrib>Luo, Qin ; Rauch, Marcus ; K. Marr, Alexandra ; Müller‐Altrock, Stefanie ; Goebel, Werner</creatorcontrib><description>Summary
Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2003.03960.x</identifier><identifier>PMID: 15049809</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - physiology ; Bacterial Toxins - genetics ; Base Sequence ; Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Guanosine Triphosphate - metabolism ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - physiology ; Hemolysin Proteins ; Listeria monocytogenes ; Listeria monocytogenes - genetics ; Listeria monocytogenes - pathogenicity ; Listeria monocytogenes - physiology ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Metalloendopeptidases - genetics ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Peptide Termination Factors ; Promoter Regions, Genetic ; Sequence Deletion ; Trans-Activators - physiology ; Transcription Factors - physiology ; Transcription Initiation Site ; Transcription, Genetic ; Virulence Factors - genetics</subject><ispartof>Molecular microbiology, 2004-04, Vol.52 (1), p.39-52</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Apr 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</citedby><cites>FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2003.03960.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2003.03960.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15049809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Qin</creatorcontrib><creatorcontrib>Rauch, Marcus</creatorcontrib><creatorcontrib>K. Marr, Alexandra</creatorcontrib><creatorcontrib>Müller‐Altrock, Stefanie</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><title>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - physiology</subject><subject>Bacterial Toxins - genetics</subject><subject>Base Sequence</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - physiology</subject><subject>Hemolysin Proteins</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - genetics</subject><subject>Listeria monocytogenes - pathogenicity</subject><subject>Listeria monocytogenes - physiology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Metalloendopeptidases - genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Peptide Termination Factors</subject><subject>Promoter Regions, Genetic</subject><subject>Sequence Deletion</subject><subject>Trans-Activators - physiology</subject><subject>Transcription Factors - physiology</subject><subject>Transcription Initiation Site</subject><subject>Transcription, Genetic</subject><subject>Virulence Factors - genetics</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EosvCKyCLA7cEO84_HzhUq9KutBU9FImb5Tjj4lViBztZmhuPwAP1aXgSnO6KSpzwxZ6Z3zcz8ocQpiSl8XzYp5SVRZLxok4zQlhKGC9Jev8Mrf4WnqMV4QVJWJ19PUOvQtgTQhkp2Ut0RguS85rwFXrYWnwwo3d49NIG5c0wGmex03j8BnhnwgjeSNw769Q8ujuwEKLCTx1YBfgYG9ttsLQt7ocOeziA7AJ2B_CdHAZj7_CN1-e_f_5qYQDbgh0f4Zgw9ik1eNe7OC3EyTISHnBrtAYfi0Z23YylGs1BjtDiZsaXtzev0QsdJ8Gb071GXz5d3G6ukt3ny-3mfJeovGIkobwqSlKzrC6bSrdN02ZNwYnMuJa84KpQTcnLkudS6abiOuecAte8JZJlUcnW6P2xb1zx-wRhFL0JCrpOWnBTELTiZUHj767Ru3_AvZu8jbsJuiA0y1mE6iOkvAvBgxaDN730s6BELPaKvVhcFIuLYrFXPNor7qP07an_1PTQPglPfkbg4xH4YTqY_7uxuL7eLi_2B3bTubg</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Luo, Qin</creator><creator>Rauch, Marcus</creator><creator>K. Marr, Alexandra</creator><creator>Müller‐Altrock, Stefanie</creator><creator>Goebel, Werner</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200404</creationdate><title>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</title><author>Luo, Qin ; Rauch, Marcus ; K. Marr, Alexandra ; Müller‐Altrock, Stefanie ; Goebel, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4730-19756083286b7fdbbd2b590a29fa959c5cb696694acfb79f4991e9f9d0a325603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - physiology</topic><topic>Bacterial Toxins - genetics</topic><topic>Base Sequence</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - physiology</topic><topic>Hemolysin Proteins</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - genetics</topic><topic>Listeria monocytogenes - pathogenicity</topic><topic>Listeria monocytogenes - physiology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Metalloendopeptidases - genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Peptide Termination Factors</topic><topic>Promoter Regions, Genetic</topic><topic>Sequence Deletion</topic><topic>Trans-Activators - physiology</topic><topic>Transcription Factors - physiology</topic><topic>Transcription Initiation Site</topic><topic>Transcription, Genetic</topic><topic>Virulence Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qin</creatorcontrib><creatorcontrib>Rauch, Marcus</creatorcontrib><creatorcontrib>K. Marr, Alexandra</creatorcontrib><creatorcontrib>Müller‐Altrock, Stefanie</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qin</au><au>Rauch, Marcus</au><au>K. Marr, Alexandra</au><au>Müller‐Altrock, Stefanie</au><au>Goebel, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-04</date><risdate>2004</risdate><volume>52</volume><issue>1</issue><spage>39</spage><epage>52</epage><pages>39-52</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Most known virulence genes of Listeria monocytogenes are regulated by the transcriptional factor PrfA. Using our recently established in vitro transcription system, we have studied the PrfA‐dependent promoter (PinlC) regulating the expression of the small, secreted internalin C. PrfA‐dependent and PrfA‐independent transcription is observed starting from PinlC in vitro and in vivo, suggesting the presence of two apparently overlapping promoters both of which use the same −10 box. Although the PrfA‐dependent transcription requires, as expected, the PrfA‐box, PrfA‐independent transcription depends on a −35 box located directly downstream of the PrfA‐box. PrfA‐independent transcription starts at A, 7 bp downstream of the common −10 box (A7), and is strongly inhibited by PrfA because of the close proximity of the PrfA binding site to the −35 box. PrfA‐dependent transcription starts preferentially at G5 but, in the absence of this start nucleotide, alternative start sites at A positions 7 or 8 bp downstream of the −10 box can also be used. The −35 box of the PrfA‐independent promoter can be functionally inactivated without affecting PrfA‐dependent transcription as long as the distance between the PrfA‐box and the −10 box remains fixed to 22 (or 23) bp. Vice versa, the PrfA‐box can be deleted without affecting PrfA‐independent transcription from PinlC, which is no longer inhibited by PrfA. The PrfA‐dependent transcription initiation needs, in contrast to the PrfA‐independent one, the presence of a high concentration of GTP (and ATP) but not of CTP and UTP. Overlapping PrfA‐dependent and PrfA‐independent promoter activity was also demonstrated for the mpl promoter (Pmpl). Again, PrfA‐dependent transcription starting at Pmpl is dominant at high GTP concentration and PrfA‐independent transcription at low GTP. Here too, the PrfA‐dependent and the PrfA‐independent promoters share the same −10 box characteristic of SigA‐loaded RNA polymerase. High GTP concentration also appears to be necessary for transcription initiation at other PrfA‐dependent promoters (Phly, PactA) but not at the PrfA‐independent promoter PinlC‐m8.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15049809</pmid><doi>10.1111/j.1365-2958.2003.03960.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2004-04, Vol.52 (1), p.39-52 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_17965101 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - genetics Bacterial Proteins - physiology Bacterial Toxins - genetics Base Sequence Gene Expression Regulation, Bacterial Genes, Bacterial Guanosine Triphosphate - metabolism Heat-Shock Proteins - genetics Heat-Shock Proteins - physiology Hemolysin Proteins Listeria monocytogenes Listeria monocytogenes - genetics Listeria monocytogenes - pathogenicity Listeria monocytogenes - physiology Membrane Proteins - genetics Membrane Proteins - physiology Metalloendopeptidases - genetics Molecular Sequence Data Mutagenesis, Site-Directed Peptide Termination Factors Promoter Regions, Genetic Sequence Deletion Trans-Activators - physiology Transcription Factors - physiology Transcription Initiation Site Transcription, Genetic Virulence Factors - genetics |
title | In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA‐dependent and ‐independent promoters that are differentially activated by GTP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20transcription%20of%20the%20Listeria%20monocytogenes%20virulence%20genes%20inlC%20and%20mpl%20reveals%20overlapping%20PrfA%E2%80%90dependent%20and%20%E2%80%90independent%20promoters%20that%20are%20differentially%20activated%20by%20GTP&rft.jtitle=Molecular%20microbiology&rft.au=Luo,%20Qin&rft.date=2004-04&rft.volume=52&rft.issue=1&rft.spage=39&rft.epage=52&rft.pages=39-52&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2003.03960.x&rft_dat=%3Cproquest_cross%3E17965101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196511243&rft_id=info:pmid/15049809&rfr_iscdi=true |