Cynodontin: A Fungal Metabolite with Antifungal Properties
A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temp...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2003-08, Vol.51 (17), p.4920-4923 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4923 |
---|---|
container_issue | 17 |
container_start_page | 4920 |
container_title | Journal of agricultural and food chemistry |
container_volume | 51 |
creator | Chrysayi-Tokousbalides, Maria Kastanias, Michael A |
description | A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products |
doi_str_mv | 10.1021/jf034359t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17958814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17958814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</originalsourceid><addsrcrecordid>eNpt0M1u1DAUBWALgei0sOAFIBuQWATu9U8cI7EYRhSQBlGprUBsLDuxS4ZMPNiOSndseU2ehIwyKhtWXpzvHlmHkEcILxAovtx4YJwJle-QBQoKpUCs75IFTGFZiwqPyHFKGwCohYT75AipAqZ4tSCvVzdDaMOQu-HVn1-_i2VxOg5Xpi8-umxs6LvsiusufyuWE_FzdBbDzsXcufSA3POmT-7h4T0hl6dvL1bvy_Wndx9Wy3VpOPBcNrZVhgukgtYOhK-sar2XtfGNB-PBWsUotdxKPh0Ijqgsq9pKNs4bqTg7Ic_m3l0MP0aXst52qXF9bwYXxqRRKlHXuIfPZ9jEkFJ0Xu9itzXxRiPo_Vb6dqvJPj6Ujnbr2n_yMM4Eyhl0Kbuft7mJ33UlmRT64uxcs6_Vmy9rRfXnyT-ZvTdBm6vYJX15TgE5ADKUsG98OgvTJL0JYxym1f7ztb8nR4jP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17958814</pqid></control><display><type>article</type><title>Cynodontin: A Fungal Metabolite with Antifungal Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chrysayi-Tokousbalides, Maria ; Kastanias, Michael A</creator><creatorcontrib>Chrysayi-Tokousbalides, Maria ; Kastanias, Michael A</creatorcontrib><description>A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf034359t</identifier><identifier>PMID: 12903946</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anthraquinones - analysis ; Anthraquinones - metabolism ; Anthraquinones - pharmacology ; antifungal properties ; Ascomycota - drug effects ; Ascomycota - growth & development ; Ascomycota - metabolism ; Avena sterilis ; Botrytis - drug effects ; Botrytis - growth & development ; Botrytis cinerea ; dicloran ; Drechslera avenae ; fungi ; Fungicides, Industrial - analysis ; Fungicides, Industrial - metabolism ; Fungicides, Industrial - pharmacology ; Sclerotinia minor ; Sclerotinia sclerotiorum ; temperature ; Verticillium - drug effects ; Verticillium - growth & development ; Verticillium dahliae</subject><ispartof>Journal of agricultural and food chemistry, 2003-08, Vol.51 (17), p.4920-4923</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</citedby><cites>FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf034359t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf034359t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12903946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chrysayi-Tokousbalides, Maria</creatorcontrib><creatorcontrib>Kastanias, Michael A</creatorcontrib><title>Cynodontin: A Fungal Metabolite with Antifungal Properties</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products</description><subject>Anthraquinones - analysis</subject><subject>Anthraquinones - metabolism</subject><subject>Anthraquinones - pharmacology</subject><subject>antifungal properties</subject><subject>Ascomycota - drug effects</subject><subject>Ascomycota - growth & development</subject><subject>Ascomycota - metabolism</subject><subject>Avena sterilis</subject><subject>Botrytis - drug effects</subject><subject>Botrytis - growth & development</subject><subject>Botrytis cinerea</subject><subject>dicloran</subject><subject>Drechslera avenae</subject><subject>fungi</subject><subject>Fungicides, Industrial - analysis</subject><subject>Fungicides, Industrial - metabolism</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Sclerotinia minor</subject><subject>Sclerotinia sclerotiorum</subject><subject>temperature</subject><subject>Verticillium - drug effects</subject><subject>Verticillium - growth & development</subject><subject>Verticillium dahliae</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1u1DAUBWALgei0sOAFIBuQWATu9U8cI7EYRhSQBlGprUBsLDuxS4ZMPNiOSndseU2ehIwyKhtWXpzvHlmHkEcILxAovtx4YJwJle-QBQoKpUCs75IFTGFZiwqPyHFKGwCohYT75AipAqZ4tSCvVzdDaMOQu-HVn1-_i2VxOg5Xpi8-umxs6LvsiusufyuWE_FzdBbDzsXcufSA3POmT-7h4T0hl6dvL1bvy_Wndx9Wy3VpOPBcNrZVhgukgtYOhK-sar2XtfGNB-PBWsUotdxKPh0Ijqgsq9pKNs4bqTg7Ic_m3l0MP0aXst52qXF9bwYXxqRRKlHXuIfPZ9jEkFJ0Xu9itzXxRiPo_Vb6dqvJPj6Ujnbr2n_yMM4Eyhl0Kbuft7mJ33UlmRT64uxcs6_Vmy9rRfXnyT-ZvTdBm6vYJX15TgE5ADKUsG98OgvTJL0JYxym1f7ztb8nR4jP</recordid><startdate>20030813</startdate><enddate>20030813</enddate><creator>Chrysayi-Tokousbalides, Maria</creator><creator>Kastanias, Michael A</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20030813</creationdate><title>Cynodontin: A Fungal Metabolite with Antifungal Properties</title><author>Chrysayi-Tokousbalides, Maria ; Kastanias, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anthraquinones - analysis</topic><topic>Anthraquinones - metabolism</topic><topic>Anthraquinones - pharmacology</topic><topic>antifungal properties</topic><topic>Ascomycota - drug effects</topic><topic>Ascomycota - growth & development</topic><topic>Ascomycota - metabolism</topic><topic>Avena sterilis</topic><topic>Botrytis - drug effects</topic><topic>Botrytis - growth & development</topic><topic>Botrytis cinerea</topic><topic>dicloran</topic><topic>Drechslera avenae</topic><topic>fungi</topic><topic>Fungicides, Industrial - analysis</topic><topic>Fungicides, Industrial - metabolism</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Sclerotinia minor</topic><topic>Sclerotinia sclerotiorum</topic><topic>temperature</topic><topic>Verticillium - drug effects</topic><topic>Verticillium - growth & development</topic><topic>Verticillium dahliae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrysayi-Tokousbalides, Maria</creatorcontrib><creatorcontrib>Kastanias, Michael A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrysayi-Tokousbalides, Maria</au><au>Kastanias, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cynodontin: A Fungal Metabolite with Antifungal Properties</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2003-08-13</date><risdate>2003</risdate><volume>51</volume><issue>17</issue><spage>4920</spage><epage>4923</epage><pages>4920-4923</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12903946</pmid><doi>10.1021/jf034359t</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2003-08, Vol.51 (17), p.4920-4923 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_17958814 |
source | ACS Publications; MEDLINE |
subjects | Anthraquinones - analysis Anthraquinones - metabolism Anthraquinones - pharmacology antifungal properties Ascomycota - drug effects Ascomycota - growth & development Ascomycota - metabolism Avena sterilis Botrytis - drug effects Botrytis - growth & development Botrytis cinerea dicloran Drechslera avenae fungi Fungicides, Industrial - analysis Fungicides, Industrial - metabolism Fungicides, Industrial - pharmacology Sclerotinia minor Sclerotinia sclerotiorum temperature Verticillium - drug effects Verticillium - growth & development Verticillium dahliae |
title | Cynodontin: A Fungal Metabolite with Antifungal Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cynodontin:%E2%80%89%20A%20Fungal%20Metabolite%20with%20Antifungal%20Properties&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Chrysayi-Tokousbalides,%20Maria&rft.date=2003-08-13&rft.volume=51&rft.issue=17&rft.spage=4920&rft.epage=4923&rft.pages=4920-4923&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/jf034359t&rft_dat=%3Cproquest_cross%3E17958814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17958814&rft_id=info:pmid/12903946&rfr_iscdi=true |