Cynodontin:  A Fungal Metabolite with Antifungal Properties

A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2003-08, Vol.51 (17), p.4920-4923
Hauptverfasser: Chrysayi-Tokousbalides, Maria, Kastanias, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4923
container_issue 17
container_start_page 4920
container_title Journal of agricultural and food chemistry
container_volume 51
creator Chrysayi-Tokousbalides, Maria
Kastanias, Michael A
description A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products
doi_str_mv 10.1021/jf034359t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17958814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17958814</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</originalsourceid><addsrcrecordid>eNpt0M1u1DAUBWALgei0sOAFIBuQWATu9U8cI7EYRhSQBlGprUBsLDuxS4ZMPNiOSndseU2ehIwyKhtWXpzvHlmHkEcILxAovtx4YJwJle-QBQoKpUCs75IFTGFZiwqPyHFKGwCohYT75AipAqZ4tSCvVzdDaMOQu-HVn1-_i2VxOg5Xpi8-umxs6LvsiusufyuWE_FzdBbDzsXcufSA3POmT-7h4T0hl6dvL1bvy_Wndx9Wy3VpOPBcNrZVhgukgtYOhK-sar2XtfGNB-PBWsUotdxKPh0Ijqgsq9pKNs4bqTg7Ic_m3l0MP0aXst52qXF9bwYXxqRRKlHXuIfPZ9jEkFJ0Xu9itzXxRiPo_Vb6dqvJPj6Ujnbr2n_yMM4Eyhl0Kbuft7mJ33UlmRT64uxcs6_Vmy9rRfXnyT-ZvTdBm6vYJX15TgE5ADKUsG98OgvTJL0JYxym1f7ztb8nR4jP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17958814</pqid></control><display><type>article</type><title>Cynodontin:  A Fungal Metabolite with Antifungal Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chrysayi-Tokousbalides, Maria ; Kastanias, Michael A</creator><creatorcontrib>Chrysayi-Tokousbalides, Maria ; Kastanias, Michael A</creatorcontrib><description>A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf034359t</identifier><identifier>PMID: 12903946</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anthraquinones - analysis ; Anthraquinones - metabolism ; Anthraquinones - pharmacology ; antifungal properties ; Ascomycota - drug effects ; Ascomycota - growth &amp; development ; Ascomycota - metabolism ; Avena sterilis ; Botrytis - drug effects ; Botrytis - growth &amp; development ; Botrytis cinerea ; dicloran ; Drechslera avenae ; fungi ; Fungicides, Industrial - analysis ; Fungicides, Industrial - metabolism ; Fungicides, Industrial - pharmacology ; Sclerotinia minor ; Sclerotinia sclerotiorum ; temperature ; Verticillium - drug effects ; Verticillium - growth &amp; development ; Verticillium dahliae</subject><ispartof>Journal of agricultural and food chemistry, 2003-08, Vol.51 (17), p.4920-4923</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</citedby><cites>FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf034359t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf034359t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12903946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chrysayi-Tokousbalides, Maria</creatorcontrib><creatorcontrib>Kastanias, Michael A</creatorcontrib><title>Cynodontin:  A Fungal Metabolite with Antifungal Properties</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products</description><subject>Anthraquinones - analysis</subject><subject>Anthraquinones - metabolism</subject><subject>Anthraquinones - pharmacology</subject><subject>antifungal properties</subject><subject>Ascomycota - drug effects</subject><subject>Ascomycota - growth &amp; development</subject><subject>Ascomycota - metabolism</subject><subject>Avena sterilis</subject><subject>Botrytis - drug effects</subject><subject>Botrytis - growth &amp; development</subject><subject>Botrytis cinerea</subject><subject>dicloran</subject><subject>Drechslera avenae</subject><subject>fungi</subject><subject>Fungicides, Industrial - analysis</subject><subject>Fungicides, Industrial - metabolism</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Sclerotinia minor</subject><subject>Sclerotinia sclerotiorum</subject><subject>temperature</subject><subject>Verticillium - drug effects</subject><subject>Verticillium - growth &amp; development</subject><subject>Verticillium dahliae</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1u1DAUBWALgei0sOAFIBuQWATu9U8cI7EYRhSQBlGprUBsLDuxS4ZMPNiOSndseU2ehIwyKhtWXpzvHlmHkEcILxAovtx4YJwJle-QBQoKpUCs75IFTGFZiwqPyHFKGwCohYT75AipAqZ4tSCvVzdDaMOQu-HVn1-_i2VxOg5Xpi8-umxs6LvsiusufyuWE_FzdBbDzsXcufSA3POmT-7h4T0hl6dvL1bvy_Wndx9Wy3VpOPBcNrZVhgukgtYOhK-sar2XtfGNB-PBWsUotdxKPh0Ijqgsq9pKNs4bqTg7Ic_m3l0MP0aXst52qXF9bwYXxqRRKlHXuIfPZ9jEkFJ0Xu9itzXxRiPo_Vb6dqvJPj6Ujnbr2n_yMM4Eyhl0Kbuft7mJ33UlmRT64uxcs6_Vmy9rRfXnyT-ZvTdBm6vYJX15TgE5ADKUsG98OgvTJL0JYxym1f7ztb8nR4jP</recordid><startdate>20030813</startdate><enddate>20030813</enddate><creator>Chrysayi-Tokousbalides, Maria</creator><creator>Kastanias, Michael A</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20030813</creationdate><title>Cynodontin:  A Fungal Metabolite with Antifungal Properties</title><author>Chrysayi-Tokousbalides, Maria ; Kastanias, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-cbd9a4512528e05f6b9dff78afcf0af0bb9322b4b74a4054119b36d67cefa7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Anthraquinones - analysis</topic><topic>Anthraquinones - metabolism</topic><topic>Anthraquinones - pharmacology</topic><topic>antifungal properties</topic><topic>Ascomycota - drug effects</topic><topic>Ascomycota - growth &amp; development</topic><topic>Ascomycota - metabolism</topic><topic>Avena sterilis</topic><topic>Botrytis - drug effects</topic><topic>Botrytis - growth &amp; development</topic><topic>Botrytis cinerea</topic><topic>dicloran</topic><topic>Drechslera avenae</topic><topic>fungi</topic><topic>Fungicides, Industrial - analysis</topic><topic>Fungicides, Industrial - metabolism</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Sclerotinia minor</topic><topic>Sclerotinia sclerotiorum</topic><topic>temperature</topic><topic>Verticillium - drug effects</topic><topic>Verticillium - growth &amp; development</topic><topic>Verticillium dahliae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chrysayi-Tokousbalides, Maria</creatorcontrib><creatorcontrib>Kastanias, Michael A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chrysayi-Tokousbalides, Maria</au><au>Kastanias, Michael A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cynodontin:  A Fungal Metabolite with Antifungal Properties</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2003-08-13</date><risdate>2003</risdate><volume>51</volume><issue>17</issue><spage>4920</spage><epage>4923</epage><pages>4920-4923</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>A red pigment that accumulates in cultures of a Drechslera avenae pathotype with specificity for Avena sterilis was isolated and identified as the anthraquinone cynodontin (3-methyl-1,4,5,8-tetrahydroxyanthraquinone). Satisfactory yield of the compound was obtained with 20−60 day incubations at temperatures between 20 and 27 °C. Cynodontin was tested in vitro for fungitoxicity and was found to be a potent inhibitor of the growth of Sclerotinia minor, Sclerotinia sclerotiorum, and Botrytis cinerea and, to a lesser extent, of Verticillium dahliae. The ED50 values obtained with these fungi were of the same order of magnitude as those of the commercial fungicides dicloran and carbendazim, which were used as reference chemicals. In contrast, the growth of a number of other fungi was not significantly inhibited by cynodontin. Anthraquinone and two other anthraquinone derivatives, emodin and chrysophanol, which were also included in the tests, did not affect the growth of the cynodontin-sensitive fungi. It thus appears that the type and position of the substitutions at the C-ring play a role in the expression of antifungal activity. Keywords: Drechslera avenae; cynodontin; anthraquinones; fungal metabolites; natural products</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12903946</pmid><doi>10.1021/jf034359t</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2003-08, Vol.51 (17), p.4920-4923
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_17958814
source ACS Publications; MEDLINE
subjects Anthraquinones - analysis
Anthraquinones - metabolism
Anthraquinones - pharmacology
antifungal properties
Ascomycota - drug effects
Ascomycota - growth & development
Ascomycota - metabolism
Avena sterilis
Botrytis - drug effects
Botrytis - growth & development
Botrytis cinerea
dicloran
Drechslera avenae
fungi
Fungicides, Industrial - analysis
Fungicides, Industrial - metabolism
Fungicides, Industrial - pharmacology
Sclerotinia minor
Sclerotinia sclerotiorum
temperature
Verticillium - drug effects
Verticillium - growth & development
Verticillium dahliae
title Cynodontin:  A Fungal Metabolite with Antifungal Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cynodontin:%E2%80%89%20A%20Fungal%20Metabolite%20with%20Antifungal%20Properties&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Chrysayi-Tokousbalides,%20Maria&rft.date=2003-08-13&rft.volume=51&rft.issue=17&rft.spage=4920&rft.epage=4923&rft.pages=4920-4923&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/jf034359t&rft_dat=%3Cproquest_cross%3E17958814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17958814&rft_id=info:pmid/12903946&rfr_iscdi=true