Facile Fabrication of MoS2‑Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing

An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron micros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-06, Vol.8 (22), p.14142-14149
Hauptverfasser: Zhang, Dongzhi, Sun, Yan’e, Li, Peng, Zhang, Yong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14149
container_issue 22
container_start_page 14142
container_title ACS applied materials & interfaces
container_volume 8
creator Zhang, Dongzhi
Sun, Yan’e
Li, Peng
Zhang, Yong
description An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.
doi_str_mv 10.1021/acsami.6b02206
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1795876560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795876560</sourcerecordid><originalsourceid>FETCH-LOGICAL-a312t-ee4a52124cedefd94315ed2907f0ef1385a04fc165ba23f7c5d89d47a7323e9a3</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMotla3LiVLEVrzO9MsRawVWruoXYc0uZGUmUmdzAjd-Qq-ok_ilFZX53L4uBw-hK4pGVHC6L2xyZRhlK0JYyQ7QX2qhBiOmWSn_7cQPXSR0oaQjDMiz1GP5VQxrlQf2YmxoQA8Mes6WNOEWOHo8Twu2c_X9zy64AM4vKwWDE93HePwq6mijeU2ptAA9rHGq6KpTYKqK8In4GlbBheaHV7uq-r9Ep15UyS4OuYArSZPb4_T4Wzx_PL4MBsaTlkzBBBGMsqEBQfeKcGpBMcUyT0BT_lYGiK8pZlcG8Z9bqUbKydyk3PGQRk-QLeHv9s6frSQGl2GZKEoTAWxTZrmSo7zTGakQ2-OaLsuweltHUpT7_SfmA64OwCdYL2JbV11yzUlem9dH6zro3X-C2xkdRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795876560</pqid></control><display><type>article</type><title>Facile Fabrication of MoS2‑Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing</title><source>ACS Publications</source><creator>Zhang, Dongzhi ; Sun, Yan’e ; Li, Peng ; Zhang, Yong</creator><creatorcontrib>Zhang, Dongzhi ; Sun, Yan’e ; Li, Peng ; Zhang, Yong</creatorcontrib><description>An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b02206</identifier><identifier>PMID: 27192399</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-06, Vol.8 (22), p.14142-14149</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b02206$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b02206$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27192399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dongzhi</creatorcontrib><creatorcontrib>Sun, Yan’e</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><title>Facile Fabrication of MoS2‑Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMotla3LiVLEVrzO9MsRawVWruoXYc0uZGUmUmdzAjd-Qq-ok_ilFZX53L4uBw-hK4pGVHC6L2xyZRhlK0JYyQ7QX2qhBiOmWSn_7cQPXSR0oaQjDMiz1GP5VQxrlQf2YmxoQA8Mes6WNOEWOHo8Twu2c_X9zy64AM4vKwWDE93HePwq6mijeU2ptAA9rHGq6KpTYKqK8In4GlbBheaHV7uq-r9Ep15UyS4OuYArSZPb4_T4Wzx_PL4MBsaTlkzBBBGMsqEBQfeKcGpBMcUyT0BT_lYGiK8pZlcG8Z9bqUbKydyk3PGQRk-QLeHv9s6frSQGl2GZKEoTAWxTZrmSo7zTGakQ2-OaLsuweltHUpT7_SfmA64OwCdYL2JbV11yzUlem9dH6zro3X-C2xkdRc</recordid><startdate>20160608</startdate><enddate>20160608</enddate><creator>Zhang, Dongzhi</creator><creator>Sun, Yan’e</creator><creator>Li, Peng</creator><creator>Zhang, Yong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160608</creationdate><title>Facile Fabrication of MoS2‑Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing</title><author>Zhang, Dongzhi ; Sun, Yan’e ; Li, Peng ; Zhang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a312t-ee4a52124cedefd94315ed2907f0ef1385a04fc165ba23f7c5d89d47a7323e9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongzhi</creatorcontrib><creatorcontrib>Sun, Yan’e</creatorcontrib><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongzhi</au><au>Sun, Yan’e</au><au>Li, Peng</au><au>Zhang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile Fabrication of MoS2‑Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-06-08</date><risdate>2016</risdate><volume>8</volume><issue>22</issue><spage>14142</spage><epage>14149</epage><pages>14142-14149</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>An ultrasensitive humidity sensor based on molybdenum-disulfide- (MoS2)-modified tin oxide (SnO2) nanocomposite has been demonstrated in this work. The nanostructural, morphological, and compositional properties of an as-prepared MoS2/SnO2 nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), nitrogen sorption analysis, and Raman spectroscopy, which confirmed its successful preparation and rationality. The sensing characteristics of the MoS2/SnO2 hybrid film device against relative humidity (RH) were investigated at room temperature. The RH sensing results revealed an unprecedented response, ultrafast response/recovery behaviors, and outstanding repeatability. To our knowledge, the sensor response yielded in this work was tens of times higher than that of the existing humidity sensors. Moreover, the MoS2/SnO2 hybrid nanocomposite film sensor exhibited great enhancement in humidity sensing performances as compared to the pure MoS2, SnO2, and graphene counterparts. Furthermore, complex impedance spectroscopy and bode plots were employed to understand the underlying sensing mechanisms of the MoS2/SnO2 nanocomposite toward humidity. The synthesized MoS2/SnO2 hybrid composite was proved to be an excellent candidate for constructing ultrahigh-performance humidity sensor toward various applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27192399</pmid><doi>10.1021/acsami.6b02206</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-06, Vol.8 (22), p.14142-14149
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1795876560
source ACS Publications
title Facile Fabrication of MoS2‑Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20Fabrication%20of%20MoS2%E2%80%91Modified%20SnO2%20Hybrid%20Nanocomposite%20for%20Ultrasensitive%20Humidity%20Sensing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Dongzhi&rft.date=2016-06-08&rft.volume=8&rft.issue=22&rft.spage=14142&rft.epage=14149&rft.pages=14142-14149&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b02206&rft_dat=%3Cproquest_pubme%3E1795876560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795876560&rft_id=info:pmid/27192399&rfr_iscdi=true