Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods
In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-appr...
Gespeichert in:
Veröffentlicht in: | Biometrics 2016-06, Vol.72 (2), p.344-353 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 2 |
container_start_page | 344 |
container_title | Biometrics |
container_volume | 72 |
creator | Drovandi, Christopher C McCutchan, Roy A |
description | In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-approximate algorithm, which we refer to as alive SMC2. The advantages of this approach over competing methods are that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo, and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series, and the cumulative number of prion disease cases in mule deer. |
doi_str_mv | 10.1111/biom.12449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1795860727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795860727</sourcerecordid><originalsourceid>FETCH-LOGICAL-p196t-b23440c91be8b6c4f1922dbb2cb480cc652d68060b2ccbea4edda25f43cb74903</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhC0kREth4Qcgj2VIsR3HidlKxZdUxADMkT_eqAYnLrFD1X9PpJZbTrp7dMMhdEXJgo661S60C8o4lydoSgtOM8IZmaDzGL8IIbIg7AxNmCgqziidIlh69wv4_XU1Zzf4Dt-rPUSnOtwGCx5H8GCSCx1uQo992GUmDF3CybUwlr2DeCAj3rm0wa5LvTJJaQ_Yu2_wbhOCjRfotFE-wuXRZ-jz8eFj9Zyt355eVst1tqVSpEyznHNiJNVQaWF4QyVjVmtmNK-IMaJgVlREkDExGhQHaxUrGp4bXXJJ8hmaH3a3ffgZIKa6ddGA96qDMMSalrKoBClZOaLXR3TQLdh627tW9fv6_5r8DwBFY8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795860727</pqid></control><display><type>article</type><title>Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Drovandi, Christopher C ; McCutchan, Roy A</creator><creatorcontrib>Drovandi, Christopher C ; McCutchan, Roy A</creatorcontrib><description>In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-approximate algorithm, which we refer to as alive SMC2. The advantages of this approach over competing methods are that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo, and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series, and the cumulative number of prion disease cases in mule deer.</description><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.12449</identifier><identifier>PMID: 26584211</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Animals ; Bayes Theorem ; Computer Simulation ; Humans ; Iatrogenic Disease ; Markov Chains ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; Prion Diseases ; Time Factors</subject><ispartof>Biometrics, 2016-06, Vol.72 (2), p.344-353</ispartof><rights>2015, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26584211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drovandi, Christopher C</creatorcontrib><creatorcontrib>McCutchan, Roy A</creatorcontrib><title>Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-approximate algorithm, which we refer to as alive SMC2. The advantages of this approach over competing methods are that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo, and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series, and the cumulative number of prion disease cases in mule deer.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Iatrogenic Disease</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Prion Diseases</subject><subject>Time Factors</subject><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kD1PwzAYhC0kREth4Qcgj2VIsR3HidlKxZdUxADMkT_eqAYnLrFD1X9PpJZbTrp7dMMhdEXJgo661S60C8o4lydoSgtOM8IZmaDzGL8IIbIg7AxNmCgqziidIlh69wv4_XU1Zzf4Dt-rPUSnOtwGCx5H8GCSCx1uQo992GUmDF3CybUwlr2DeCAj3rm0wa5LvTJJaQ_Yu2_wbhOCjRfotFE-wuXRZ-jz8eFj9Zyt355eVst1tqVSpEyznHNiJNVQaWF4QyVjVmtmNK-IMaJgVlREkDExGhQHaxUrGp4bXXJJ8hmaH3a3ffgZIKa6ddGA96qDMMSalrKoBClZOaLXR3TQLdh627tW9fv6_5r8DwBFY8Y</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Drovandi, Christopher C</creator><creator>McCutchan, Roy A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods</title><author>Drovandi, Christopher C ; McCutchan, Roy A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p196t-b23440c91be8b6c4f1922dbb2cb480cc652d68060b2ccbea4edda25f43cb74903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Iatrogenic Disease</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Prion Diseases</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drovandi, Christopher C</creatorcontrib><creatorcontrib>McCutchan, Roy A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drovandi, Christopher C</au><au>McCutchan, Roy A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>72</volume><issue>2</issue><spage>344</spage><epage>353</epage><pages>344-353</pages><eissn>1541-0420</eissn><abstract>In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-approximate algorithm, which we refer to as alive SMC2. The advantages of this approach over competing methods are that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo, and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series, and the cumulative number of prion disease cases in mule deer.</abstract><cop>United States</cop><pmid>26584211</pmid><doi>10.1111/biom.12449</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1541-0420 |
ispartof | Biometrics, 2016-06, Vol.72 (2), p.344-353 |
issn | 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_1795860727 |
source | MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Algorithms Animals Bayes Theorem Computer Simulation Humans Iatrogenic Disease Markov Chains Models, Biological Models, Statistical Monte Carlo Method Prion Diseases Time Factors |
title | Alive SMC(2) : Bayesian model selection for low-count time series models with intractable likelihoods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alive%20SMC(2)%20:%20Bayesian%20model%20selection%20for%20low-count%20time%20series%20models%20with%20intractable%20likelihoods&rft.jtitle=Biometrics&rft.au=Drovandi,%20Christopher%20C&rft.date=2016-06-01&rft.volume=72&rft.issue=2&rft.spage=344&rft.epage=353&rft.pages=344-353&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.12449&rft_dat=%3Cproquest_pubme%3E1795860727%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795860727&rft_id=info:pmid/26584211&rfr_iscdi=true |