Predicting and Assessing Fall Risk in an Acute Inpatient Rehabilitation Facility

Purpose Unintentional falls account for 70% of all hospital accidents. The objective of this study was to identify risk factors for falls and develop an assessment tool specific for an inpatient rehabilitation facility setting. Design/Method Diagnosis and Functional Independence Measure (FIM) scores...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rehabilitation nursing 2014-03, Vol.39 (2), p.86-93
Hauptverfasser: Rosario, Emily R., Kaplan, Stephanie E., Khonsari, Sepehr, Patterson, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 2
container_start_page 86
container_title Rehabilitation nursing
container_volume 39
creator Rosario, Emily R.
Kaplan, Stephanie E.
Khonsari, Sepehr
Patterson, David
description Purpose Unintentional falls account for 70% of all hospital accidents. The objective of this study was to identify risk factors for falls and develop an assessment tool specific for an inpatient rehabilitation facility setting. Design/Method Diagnosis and Functional Independence Measure (FIM) scores were collected for 174 patients to assess predictors for fall risk. Independent t‐tests, chi‐square, and logistic regression analysis were conducted to examine differences between fallers and nonfallers. Findings We identified several risk factors for falls including 4 FIM items: toileting, bed transfer, tub/shower transfer, and stairs; and three diagnoses: right stroke, traumatic brain injury, and amputation. From these findings, we completed initial development of a risk assessment tool. Conclusions Evaluation of the tool suggests good specificity with 20%–30% of the patient population identified as high risk and good sensitivity by correctly predicting nearly 90% of patient falls. Clinical Relevance Continued evaluation of this assessment tool is needed to identify effectiveness in predicting patients who are at high risk for falling.
doi_str_mv 10.1002/rnj.114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1795496912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795496912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4824-b9ce2dea61082f6a60134fbe1f11c003f67883723db7c86804a7c52f5ac39a533</originalsourceid><addsrcrecordid>eNqF0VtrFDEYBuAgil2r-A9kwIsKMjVfksnhcqn2RLsuSz3chUwmo9nOZtZkBt1_3yxTeyFIr8JLHl74eBF6DfgYMCYfYlgfA7AnaEYwk6VQDD9FM0yELJnE4gC9SGmNMTDF2XN0QKgEKpSaoeUyusbbwYcfhQlNMU_JpbRPp6bripVPt4UP-auY23FwxUXYmsG7MBQr99PUvvNDzn3I3O7D7iV61pouuVf37yH6cvrp5uS8vPp8dnEyvyotk4SVtbKONM5wwJK03HAMlLW1gxbAYkxbLqSkgtCmFlZyiZkRtiJtZSxVpqL0EL2berex_zW6NOiNT9Z1nQmuH5MGoap8rQLyOK0wZwDAq0zf_kPX_RhDPiQrzkSlJFdZHU3Kxj6l6Fq9jX5j4k4D1vs9dN5D5z2yfHPfN9Yb1zy4vwNk8H4Cv33ndv_r0avF5VRXTtqnwf150Cbeai6oqPS3xZm-5NeL5c3Hr_o7vQMxp6Bx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564759869</pqid></control><display><type>article</type><title>Predicting and Assessing Fall Risk in an Acute Inpatient Rehabilitation Facility</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>Rosario, Emily R. ; Kaplan, Stephanie E. ; Khonsari, Sepehr ; Patterson, David</creator><creatorcontrib>Rosario, Emily R. ; Kaplan, Stephanie E. ; Khonsari, Sepehr ; Patterson, David</creatorcontrib><description>Purpose Unintentional falls account for 70% of all hospital accidents. The objective of this study was to identify risk factors for falls and develop an assessment tool specific for an inpatient rehabilitation facility setting. Design/Method Diagnosis and Functional Independence Measure (FIM) scores were collected for 174 patients to assess predictors for fall risk. Independent t‐tests, chi‐square, and logistic regression analysis were conducted to examine differences between fallers and nonfallers. Findings We identified several risk factors for falls including 4 FIM items: toileting, bed transfer, tub/shower transfer, and stairs; and three diagnoses: right stroke, traumatic brain injury, and amputation. From these findings, we completed initial development of a risk assessment tool. Conclusions Evaluation of the tool suggests good specificity with 20%–30% of the patient population identified as high risk and good sensitivity by correctly predicting nearly 90% of patient falls. Clinical Relevance Continued evaluation of this assessment tool is needed to identify effectiveness in predicting patients who are at high risk for falling.</description><identifier>ISSN: 0278-4807</identifier><identifier>EISSN: 2048-7940</identifier><identifier>DOI: 10.1002/rnj.114</identifier><identifier>PMID: 23813799</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Accidental Falls - prevention &amp; control ; Accidental Falls - statistics &amp; numerical data ; brain injury ; Education, Nursing, Continuing ; fall risk ; Humans ; inpatient rehabilitation facility ; Inpatients - statistics &amp; numerical data ; Nursing ; Older people ; Predictive Value of Tests ; Rehabilitation ; Rehabilitation Centers - statistics &amp; numerical data ; Rehabilitation Nursing - methods ; Risk Factors ; Safety Management - methods ; stroke ; Stroke - nursing ; Stroke Rehabilitation</subject><ispartof>Rehabilitation nursing, 2014-03, Vol.39 (2), p.86-93</ispartof><rights>2013 Association of Rehabilitation Nurses</rights><rights>2013 Association of Rehabilitation Nurses.</rights><rights>2014 Association of Rehabilitation Nurses</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4824-b9ce2dea61082f6a60134fbe1f11c003f67883723db7c86804a7c52f5ac39a533</citedby><cites>FETCH-LOGICAL-c4824-b9ce2dea61082f6a60134fbe1f11c003f67883723db7c86804a7c52f5ac39a533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnj.114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnj.114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23813799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosario, Emily R.</creatorcontrib><creatorcontrib>Kaplan, Stephanie E.</creatorcontrib><creatorcontrib>Khonsari, Sepehr</creatorcontrib><creatorcontrib>Patterson, David</creatorcontrib><title>Predicting and Assessing Fall Risk in an Acute Inpatient Rehabilitation Facility</title><title>Rehabilitation nursing</title><addtitle>Rehabil Nurs</addtitle><description>Purpose Unintentional falls account for 70% of all hospital accidents. The objective of this study was to identify risk factors for falls and develop an assessment tool specific for an inpatient rehabilitation facility setting. Design/Method Diagnosis and Functional Independence Measure (FIM) scores were collected for 174 patients to assess predictors for fall risk. Independent t‐tests, chi‐square, and logistic regression analysis were conducted to examine differences between fallers and nonfallers. Findings We identified several risk factors for falls including 4 FIM items: toileting, bed transfer, tub/shower transfer, and stairs; and three diagnoses: right stroke, traumatic brain injury, and amputation. From these findings, we completed initial development of a risk assessment tool. Conclusions Evaluation of the tool suggests good specificity with 20%–30% of the patient population identified as high risk and good sensitivity by correctly predicting nearly 90% of patient falls. Clinical Relevance Continued evaluation of this assessment tool is needed to identify effectiveness in predicting patients who are at high risk for falling.</description><subject>Accidental Falls - prevention &amp; control</subject><subject>Accidental Falls - statistics &amp; numerical data</subject><subject>brain injury</subject><subject>Education, Nursing, Continuing</subject><subject>fall risk</subject><subject>Humans</subject><subject>inpatient rehabilitation facility</subject><subject>Inpatients - statistics &amp; numerical data</subject><subject>Nursing</subject><subject>Older people</subject><subject>Predictive Value of Tests</subject><subject>Rehabilitation</subject><subject>Rehabilitation Centers - statistics &amp; numerical data</subject><subject>Rehabilitation Nursing - methods</subject><subject>Risk Factors</subject><subject>Safety Management - methods</subject><subject>stroke</subject><subject>Stroke - nursing</subject><subject>Stroke Rehabilitation</subject><issn>0278-4807</issn><issn>2048-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VtrFDEYBuAgil2r-A9kwIsKMjVfksnhcqn2RLsuSz3chUwmo9nOZtZkBt1_3yxTeyFIr8JLHl74eBF6DfgYMCYfYlgfA7AnaEYwk6VQDD9FM0yELJnE4gC9SGmNMTDF2XN0QKgEKpSaoeUyusbbwYcfhQlNMU_JpbRPp6bripVPt4UP-auY23FwxUXYmsG7MBQr99PUvvNDzn3I3O7D7iV61pouuVf37yH6cvrp5uS8vPp8dnEyvyotk4SVtbKONM5wwJK03HAMlLW1gxbAYkxbLqSkgtCmFlZyiZkRtiJtZSxVpqL0EL2berex_zW6NOiNT9Z1nQmuH5MGoap8rQLyOK0wZwDAq0zf_kPX_RhDPiQrzkSlJFdZHU3Kxj6l6Fq9jX5j4k4D1vs9dN5D5z2yfHPfN9Yb1zy4vwNk8H4Cv33ndv_r0avF5VRXTtqnwf150Cbeai6oqPS3xZm-5NeL5c3Hr_o7vQMxp6Bx</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Rosario, Emily R.</creator><creator>Kaplan, Stephanie E.</creator><creator>Khonsari, Sepehr</creator><creator>Patterson, David</creator><general>Blackwell Publishing Ltd</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ASE</scope><scope>FPQ</scope><scope>K6X</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>201403</creationdate><title>Predicting and Assessing Fall Risk in an Acute Inpatient Rehabilitation Facility</title><author>Rosario, Emily R. ; Kaplan, Stephanie E. ; Khonsari, Sepehr ; Patterson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4824-b9ce2dea61082f6a60134fbe1f11c003f67883723db7c86804a7c52f5ac39a533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accidental Falls - prevention &amp; control</topic><topic>Accidental Falls - statistics &amp; numerical data</topic><topic>brain injury</topic><topic>Education, Nursing, Continuing</topic><topic>fall risk</topic><topic>Humans</topic><topic>inpatient rehabilitation facility</topic><topic>Inpatients - statistics &amp; numerical data</topic><topic>Nursing</topic><topic>Older people</topic><topic>Predictive Value of Tests</topic><topic>Rehabilitation</topic><topic>Rehabilitation Centers - statistics &amp; numerical data</topic><topic>Rehabilitation Nursing - methods</topic><topic>Risk Factors</topic><topic>Safety Management - methods</topic><topic>stroke</topic><topic>Stroke - nursing</topic><topic>Stroke Rehabilitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosario, Emily R.</creatorcontrib><creatorcontrib>Kaplan, Stephanie E.</creatorcontrib><creatorcontrib>Khonsari, Sepehr</creatorcontrib><creatorcontrib>Patterson, David</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>British Nursing Index</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Rehabilitation nursing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosario, Emily R.</au><au>Kaplan, Stephanie E.</au><au>Khonsari, Sepehr</au><au>Patterson, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting and Assessing Fall Risk in an Acute Inpatient Rehabilitation Facility</atitle><jtitle>Rehabilitation nursing</jtitle><addtitle>Rehabil Nurs</addtitle><date>2014-03</date><risdate>2014</risdate><volume>39</volume><issue>2</issue><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>0278-4807</issn><eissn>2048-7940</eissn><abstract>Purpose Unintentional falls account for 70% of all hospital accidents. The objective of this study was to identify risk factors for falls and develop an assessment tool specific for an inpatient rehabilitation facility setting. Design/Method Diagnosis and Functional Independence Measure (FIM) scores were collected for 174 patients to assess predictors for fall risk. Independent t‐tests, chi‐square, and logistic regression analysis were conducted to examine differences between fallers and nonfallers. Findings We identified several risk factors for falls including 4 FIM items: toileting, bed transfer, tub/shower transfer, and stairs; and three diagnoses: right stroke, traumatic brain injury, and amputation. From these findings, we completed initial development of a risk assessment tool. Conclusions Evaluation of the tool suggests good specificity with 20%–30% of the patient population identified as high risk and good sensitivity by correctly predicting nearly 90% of patient falls. Clinical Relevance Continued evaluation of this assessment tool is needed to identify effectiveness in predicting patients who are at high risk for falling.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23813799</pmid><doi>10.1002/rnj.114</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-4807
ispartof Rehabilitation nursing, 2014-03, Vol.39 (2), p.86-93
issn 0278-4807
2048-7940
language eng
recordid cdi_proquest_miscellaneous_1795496912
source MEDLINE; Wiley Online Library Journals
subjects Accidental Falls - prevention & control
Accidental Falls - statistics & numerical data
brain injury
Education, Nursing, Continuing
fall risk
Humans
inpatient rehabilitation facility
Inpatients - statistics & numerical data
Nursing
Older people
Predictive Value of Tests
Rehabilitation
Rehabilitation Centers - statistics & numerical data
Rehabilitation Nursing - methods
Risk Factors
Safety Management - methods
stroke
Stroke - nursing
Stroke Rehabilitation
title Predicting and Assessing Fall Risk in an Acute Inpatient Rehabilitation Facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20and%20Assessing%20Fall%20Risk%20in%20an%20Acute%20Inpatient%20Rehabilitation%20Facility&rft.jtitle=Rehabilitation%20nursing&rft.au=Rosario,%20Emily%20R.&rft.date=2014-03&rft.volume=39&rft.issue=2&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=0278-4807&rft.eissn=2048-7940&rft_id=info:doi/10.1002/rnj.114&rft_dat=%3Cproquest_cross%3E1795496912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564759869&rft_id=info:pmid/23813799&rfr_iscdi=true