Expression and role of the TGF-β family in glial cells infected with Borna disease virus

A previous study revealed that the expression of the Borna disease virus (BDV)-encoding phosphoprotein in glial cells was sufficient to induce neurobehavioral abnormalities resembling Borna disease. To evaluate the involvement of the TGF-β family in BDV-induced changes in cell responses by C6 glial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbes and infection 2016-02, Vol.18 (2), p.128-136
Hauptverfasser: Nishino, Yoshii, Murakami, Masaru, Funaba, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A previous study revealed that the expression of the Borna disease virus (BDV)-encoding phosphoprotein in glial cells was sufficient to induce neurobehavioral abnormalities resembling Borna disease. To evaluate the involvement of the TGF-β family in BDV-induced changes in cell responses by C6 glial cells, we examined the expression levels of the TGF-β family and effects of inhibiting the TGF-β family pathway in BDV-infected C6 (C6BV) cells. The expression of activin βA and BMP7 was markedly increased in BDV-infected cells. Expression of Smad7, a TGF-β family-inducible gene, was increased by BDV infection, and the expression was decreased by treatment with A-83-01 or LDN-193189, inhibitors of the TGF-β/activin or BMP pathway, respectively. These results suggest autocrine effects of activin A and BMP7 in C6BV cells. IGFBP-3 expression was also induced by BDV infection; it was below the detection limit in C6 cells. The expression level of IGFBP-3 was decreased by LDN-193189 in C6BV cells, suggesting that endogenous BMP activity is responsible for IGFBP-3 gene induction. Our results reveal the regulatory expression of genes related to the TGF-β family, and the role of the enhanced BMP pathway in modulating cell responses in BDV-infected glial cells.
ISSN:1286-4579
1769-714X
DOI:10.1016/j.micinf.2015.10.001