The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication
MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-4...
Gespeichert in:
Veröffentlicht in: | Science signaling 2015-12, Vol.8 (406), p.ra126-ra126 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | ra126 |
---|---|
container_issue | 406 |
container_start_page | ra126 |
container_title | Science signaling |
container_volume | 8 |
creator | Ingle, Harshad Kumar, Sushil Raut, Ashwin Ashok Mishra, Anamika Kulkarni, Diwakar Dattatraya Kameyama, Takeshi Takaoka, Akinori Akira, Shizuo Kumar, Himanshu |
description | MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection. |
doi_str_mv | 10.1126/scisignal.aab3183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1794495509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747314826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoVqs_wI1k6WZqnpNkWcQXFIVS10Mmk2kj86hJRqgb_7qprV27ugfudw6XewC4wmiCMclvg3HBLTvdTLQuKZb0CJxhRUWmMOPHW814hqQQI3AewjtCOSZEnYIRyXPGuaRn4HuxsrB1xvfzl2kS84xJDqP2SxsDXPUhQt1V0HV1M9juS8NP54cAo9ddMN6tExR76O1yaHS0iY0uEbqBrm2HzsXNr93bEL0zEe523q4bZ3R0fXcBTmrdBHu5n2Pw9nC_uHvKZq-Pz3fTWWYYQjEzVJRVmaMqN4ZgUykqDbGcIi5lKREjoqS54HVVaqsQq4UiWvKEaUEYRpaOwc0ud-37jyGdU7QuGNs0urP9EAosFGOKc6T-gTJBMZMkTyjeoel_IXhbF2vvWu03BUbFtqLiUFGxryh5rvfxQ9na6uD464T-AFxekeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747314826</pqid></control><display><type>article</type><title>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</title><source>MEDLINE</source><source>Science Magazine</source><creator>Ingle, Harshad ; Kumar, Sushil ; Raut, Ashwin Ashok ; Mishra, Anamika ; Kulkarni, Diwakar Dattatraya ; Kameyama, Takeshi ; Takaoka, Akinori ; Akira, Shizuo ; Kumar, Himanshu</creator><creatorcontrib>Ingle, Harshad ; Kumar, Sushil ; Raut, Ashwin Ashok ; Mishra, Anamika ; Kulkarni, Diwakar Dattatraya ; Kameyama, Takeshi ; Takaoka, Akinori ; Akira, Shizuo ; Kumar, Himanshu</creatorcontrib><description>MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.aab3183</identifier><identifier>PMID: 26645583</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; DEAD Box Protein 58 ; DEAD-box RNA Helicases - biosynthesis ; DEAD-box RNA Helicases - genetics ; DEAD-box RNA Helicases - immunology ; Dogs ; HEK293 Cells ; Humans ; Immunity, Innate ; Influenza A Virus, H5N1 Subtype - physiology ; Influenza virus ; Influenza, Human - genetics ; Influenza, Human - immunology ; Influenza, Human - metabolism ; Madin Darby Canine Kidney Cells ; MicroRNAs - genetics ; MicroRNAs - immunology ; MicroRNAs - metabolism ; Newcastle disease virus ; Receptors, Immunologic ; RNA, Viral - biosynthesis ; RNA, Viral - genetics ; RNA, Viral - immunology ; Signal Transduction - genetics ; Signal Transduction - immunology ; Viral Proteins - genetics ; Viral Proteins - immunology ; Viral Proteins - metabolism ; Virus Replication - physiology</subject><ispartof>Science signaling, 2015-12, Vol.8 (406), p.ra126-ra126</ispartof><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</citedby><cites>FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26645583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingle, Harshad</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Raut, Ashwin Ashok</creatorcontrib><creatorcontrib>Mishra, Anamika</creatorcontrib><creatorcontrib>Kulkarni, Diwakar Dattatraya</creatorcontrib><creatorcontrib>Kameyama, Takeshi</creatorcontrib><creatorcontrib>Takaoka, Akinori</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Kumar, Himanshu</creatorcontrib><title>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.</description><subject>Animals</subject><subject>DEAD Box Protein 58</subject><subject>DEAD-box RNA Helicases - biosynthesis</subject><subject>DEAD-box RNA Helicases - genetics</subject><subject>DEAD-box RNA Helicases - immunology</subject><subject>Dogs</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Influenza A Virus, H5N1 Subtype - physiology</subject><subject>Influenza virus</subject><subject>Influenza, Human - genetics</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - metabolism</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - immunology</subject><subject>MicroRNAs - metabolism</subject><subject>Newcastle disease virus</subject><subject>Receptors, Immunologic</subject><subject>RNA, Viral - biosynthesis</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - immunology</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - immunology</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Replication - physiology</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMoVqs_wI1k6WZqnpNkWcQXFIVS10Mmk2kj86hJRqgb_7qprV27ugfudw6XewC4wmiCMclvg3HBLTvdTLQuKZb0CJxhRUWmMOPHW814hqQQI3AewjtCOSZEnYIRyXPGuaRn4HuxsrB1xvfzl2kS84xJDqP2SxsDXPUhQt1V0HV1M9juS8NP54cAo9ddMN6tExR76O1yaHS0iY0uEbqBrm2HzsXNr93bEL0zEe523q4bZ3R0fXcBTmrdBHu5n2Pw9nC_uHvKZq-Pz3fTWWYYQjEzVJRVmaMqN4ZgUykqDbGcIi5lKREjoqS54HVVaqsQq4UiWvKEaUEYRpaOwc0ud-37jyGdU7QuGNs0urP9EAosFGOKc6T-gTJBMZMkTyjeoel_IXhbF2vvWu03BUbFtqLiUFGxryh5rvfxQ9na6uD464T-AFxekeA</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Ingle, Harshad</creator><creator>Kumar, Sushil</creator><creator>Raut, Ashwin Ashok</creator><creator>Mishra, Anamika</creator><creator>Kulkarni, Diwakar Dattatraya</creator><creator>Kameyama, Takeshi</creator><creator>Takaoka, Akinori</creator><creator>Akira, Shizuo</creator><creator>Kumar, Himanshu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20151208</creationdate><title>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</title><author>Ingle, Harshad ; Kumar, Sushil ; Raut, Ashwin Ashok ; Mishra, Anamika ; Kulkarni, Diwakar Dattatraya ; Kameyama, Takeshi ; Takaoka, Akinori ; Akira, Shizuo ; Kumar, Himanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>DEAD Box Protein 58</topic><topic>DEAD-box RNA Helicases - biosynthesis</topic><topic>DEAD-box RNA Helicases - genetics</topic><topic>DEAD-box RNA Helicases - immunology</topic><topic>Dogs</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Influenza A Virus, H5N1 Subtype - physiology</topic><topic>Influenza virus</topic><topic>Influenza, Human - genetics</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - metabolism</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - immunology</topic><topic>MicroRNAs - metabolism</topic><topic>Newcastle disease virus</topic><topic>Receptors, Immunologic</topic><topic>RNA, Viral - biosynthesis</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - immunology</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - immunology</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Replication - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingle, Harshad</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Raut, Ashwin Ashok</creatorcontrib><creatorcontrib>Mishra, Anamika</creatorcontrib><creatorcontrib>Kulkarni, Diwakar Dattatraya</creatorcontrib><creatorcontrib>Kameyama, Takeshi</creatorcontrib><creatorcontrib>Takaoka, Akinori</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Kumar, Himanshu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingle, Harshad</au><au>Kumar, Sushil</au><au>Raut, Ashwin Ashok</au><au>Mishra, Anamika</au><au>Kulkarni, Diwakar Dattatraya</au><au>Kameyama, Takeshi</au><au>Takaoka, Akinori</au><au>Akira, Shizuo</au><au>Kumar, Himanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2015-12-08</date><risdate>2015</risdate><volume>8</volume><issue>406</issue><spage>ra126</spage><epage>ra126</epage><pages>ra126-ra126</pages><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.</abstract><cop>United States</cop><pmid>26645583</pmid><doi>10.1126/scisignal.aab3183</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-0877 |
ispartof | Science signaling, 2015-12, Vol.8 (406), p.ra126-ra126 |
issn | 1945-0877 1937-9145 |
language | eng |
recordid | cdi_proquest_miscellaneous_1794495509 |
source | MEDLINE; Science Magazine |
subjects | Animals DEAD Box Protein 58 DEAD-box RNA Helicases - biosynthesis DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - immunology Dogs HEK293 Cells Humans Immunity, Innate Influenza A Virus, H5N1 Subtype - physiology Influenza virus Influenza, Human - genetics Influenza, Human - immunology Influenza, Human - metabolism Madin Darby Canine Kidney Cells MicroRNAs - genetics MicroRNAs - immunology MicroRNAs - metabolism Newcastle disease virus Receptors, Immunologic RNA, Viral - biosynthesis RNA, Viral - genetics RNA, Viral - immunology Signal Transduction - genetics Signal Transduction - immunology Viral Proteins - genetics Viral Proteins - immunology Viral Proteins - metabolism Virus Replication - physiology |
title | The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microRNA%20miR-485%20targets%20host%20and%20influenza%20virus%20transcripts%20to%20regulate%20antiviral%20immunity%20and%20restrict%20viral%20replication&rft.jtitle=Science%20signaling&rft.au=Ingle,%20Harshad&rft.date=2015-12-08&rft.volume=8&rft.issue=406&rft.spage=ra126&rft.epage=ra126&rft.pages=ra126-ra126&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.aab3183&rft_dat=%3Cproquest_cross%3E1747314826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747314826&rft_id=info:pmid/26645583&rfr_iscdi=true |