The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication

MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science signaling 2015-12, Vol.8 (406), p.ra126-ra126
Hauptverfasser: Ingle, Harshad, Kumar, Sushil, Raut, Ashwin Ashok, Mishra, Anamika, Kulkarni, Diwakar Dattatraya, Kameyama, Takeshi, Takaoka, Akinori, Akira, Shizuo, Kumar, Himanshu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ra126
container_issue 406
container_start_page ra126
container_title Science signaling
container_volume 8
creator Ingle, Harshad
Kumar, Sushil
Raut, Ashwin Ashok
Mishra, Anamika
Kulkarni, Diwakar Dattatraya
Kameyama, Takeshi
Takaoka, Akinori
Akira, Shizuo
Kumar, Himanshu
description MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.
doi_str_mv 10.1126/scisignal.aab3183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1794495509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747314826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoVqs_wI1k6WZqnpNkWcQXFIVS10Mmk2kj86hJRqgb_7qprV27ugfudw6XewC4wmiCMclvg3HBLTvdTLQuKZb0CJxhRUWmMOPHW814hqQQI3AewjtCOSZEnYIRyXPGuaRn4HuxsrB1xvfzl2kS84xJDqP2SxsDXPUhQt1V0HV1M9juS8NP54cAo9ddMN6tExR76O1yaHS0iY0uEbqBrm2HzsXNr93bEL0zEe523q4bZ3R0fXcBTmrdBHu5n2Pw9nC_uHvKZq-Pz3fTWWYYQjEzVJRVmaMqN4ZgUykqDbGcIi5lKREjoqS54HVVaqsQq4UiWvKEaUEYRpaOwc0ud-37jyGdU7QuGNs0urP9EAosFGOKc6T-gTJBMZMkTyjeoel_IXhbF2vvWu03BUbFtqLiUFGxryh5rvfxQ9na6uD464T-AFxekeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747314826</pqid></control><display><type>article</type><title>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</title><source>MEDLINE</source><source>Science Magazine</source><creator>Ingle, Harshad ; Kumar, Sushil ; Raut, Ashwin Ashok ; Mishra, Anamika ; Kulkarni, Diwakar Dattatraya ; Kameyama, Takeshi ; Takaoka, Akinori ; Akira, Shizuo ; Kumar, Himanshu</creator><creatorcontrib>Ingle, Harshad ; Kumar, Sushil ; Raut, Ashwin Ashok ; Mishra, Anamika ; Kulkarni, Diwakar Dattatraya ; Kameyama, Takeshi ; Takaoka, Akinori ; Akira, Shizuo ; Kumar, Himanshu</creatorcontrib><description>MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.aab3183</identifier><identifier>PMID: 26645583</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; DEAD Box Protein 58 ; DEAD-box RNA Helicases - biosynthesis ; DEAD-box RNA Helicases - genetics ; DEAD-box RNA Helicases - immunology ; Dogs ; HEK293 Cells ; Humans ; Immunity, Innate ; Influenza A Virus, H5N1 Subtype - physiology ; Influenza virus ; Influenza, Human - genetics ; Influenza, Human - immunology ; Influenza, Human - metabolism ; Madin Darby Canine Kidney Cells ; MicroRNAs - genetics ; MicroRNAs - immunology ; MicroRNAs - metabolism ; Newcastle disease virus ; Receptors, Immunologic ; RNA, Viral - biosynthesis ; RNA, Viral - genetics ; RNA, Viral - immunology ; Signal Transduction - genetics ; Signal Transduction - immunology ; Viral Proteins - genetics ; Viral Proteins - immunology ; Viral Proteins - metabolism ; Virus Replication - physiology</subject><ispartof>Science signaling, 2015-12, Vol.8 (406), p.ra126-ra126</ispartof><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</citedby><cites>FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26645583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingle, Harshad</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Raut, Ashwin Ashok</creatorcontrib><creatorcontrib>Mishra, Anamika</creatorcontrib><creatorcontrib>Kulkarni, Diwakar Dattatraya</creatorcontrib><creatorcontrib>Kameyama, Takeshi</creatorcontrib><creatorcontrib>Takaoka, Akinori</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Kumar, Himanshu</creatorcontrib><title>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.</description><subject>Animals</subject><subject>DEAD Box Protein 58</subject><subject>DEAD-box RNA Helicases - biosynthesis</subject><subject>DEAD-box RNA Helicases - genetics</subject><subject>DEAD-box RNA Helicases - immunology</subject><subject>Dogs</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Influenza A Virus, H5N1 Subtype - physiology</subject><subject>Influenza virus</subject><subject>Influenza, Human - genetics</subject><subject>Influenza, Human - immunology</subject><subject>Influenza, Human - metabolism</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - immunology</subject><subject>MicroRNAs - metabolism</subject><subject>Newcastle disease virus</subject><subject>Receptors, Immunologic</subject><subject>RNA, Viral - biosynthesis</subject><subject>RNA, Viral - genetics</subject><subject>RNA, Viral - immunology</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - immunology</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - immunology</subject><subject>Viral Proteins - metabolism</subject><subject>Virus Replication - physiology</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtLAzEUhYMoVqs_wI1k6WZqnpNkWcQXFIVS10Mmk2kj86hJRqgb_7qprV27ugfudw6XewC4wmiCMclvg3HBLTvdTLQuKZb0CJxhRUWmMOPHW814hqQQI3AewjtCOSZEnYIRyXPGuaRn4HuxsrB1xvfzl2kS84xJDqP2SxsDXPUhQt1V0HV1M9juS8NP54cAo9ddMN6tExR76O1yaHS0iY0uEbqBrm2HzsXNr93bEL0zEe523q4bZ3R0fXcBTmrdBHu5n2Pw9nC_uHvKZq-Pz3fTWWYYQjEzVJRVmaMqN4ZgUykqDbGcIi5lKREjoqS54HVVaqsQq4UiWvKEaUEYRpaOwc0ud-37jyGdU7QuGNs0urP9EAosFGOKc6T-gTJBMZMkTyjeoel_IXhbF2vvWu03BUbFtqLiUFGxryh5rvfxQ9na6uD464T-AFxekeA</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Ingle, Harshad</creator><creator>Kumar, Sushil</creator><creator>Raut, Ashwin Ashok</creator><creator>Mishra, Anamika</creator><creator>Kulkarni, Diwakar Dattatraya</creator><creator>Kameyama, Takeshi</creator><creator>Takaoka, Akinori</creator><creator>Akira, Shizuo</creator><creator>Kumar, Himanshu</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20151208</creationdate><title>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</title><author>Ingle, Harshad ; Kumar, Sushil ; Raut, Ashwin Ashok ; Mishra, Anamika ; Kulkarni, Diwakar Dattatraya ; Kameyama, Takeshi ; Takaoka, Akinori ; Akira, Shizuo ; Kumar, Himanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c37bdb60d6cc21cd938c2e530588b80427b3675fdbae904f792a85d93a72410e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>DEAD Box Protein 58</topic><topic>DEAD-box RNA Helicases - biosynthesis</topic><topic>DEAD-box RNA Helicases - genetics</topic><topic>DEAD-box RNA Helicases - immunology</topic><topic>Dogs</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Influenza A Virus, H5N1 Subtype - physiology</topic><topic>Influenza virus</topic><topic>Influenza, Human - genetics</topic><topic>Influenza, Human - immunology</topic><topic>Influenza, Human - metabolism</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - immunology</topic><topic>MicroRNAs - metabolism</topic><topic>Newcastle disease virus</topic><topic>Receptors, Immunologic</topic><topic>RNA, Viral - biosynthesis</topic><topic>RNA, Viral - genetics</topic><topic>RNA, Viral - immunology</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - immunology</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - immunology</topic><topic>Viral Proteins - metabolism</topic><topic>Virus Replication - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingle, Harshad</creatorcontrib><creatorcontrib>Kumar, Sushil</creatorcontrib><creatorcontrib>Raut, Ashwin Ashok</creatorcontrib><creatorcontrib>Mishra, Anamika</creatorcontrib><creatorcontrib>Kulkarni, Diwakar Dattatraya</creatorcontrib><creatorcontrib>Kameyama, Takeshi</creatorcontrib><creatorcontrib>Takaoka, Akinori</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Kumar, Himanshu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingle, Harshad</au><au>Kumar, Sushil</au><au>Raut, Ashwin Ashok</au><au>Mishra, Anamika</au><au>Kulkarni, Diwakar Dattatraya</au><au>Kameyama, Takeshi</au><au>Takaoka, Akinori</au><au>Akira, Shizuo</au><au>Kumar, Himanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2015-12-08</date><risdate>2015</risdate><volume>8</volume><issue>406</issue><spage>ra126</spage><epage>ra126</epage><pages>ra126-ra126</pages><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.</abstract><cop>United States</cop><pmid>26645583</pmid><doi>10.1126/scisignal.aab3183</doi></addata></record>
fulltext fulltext
identifier ISSN: 1945-0877
ispartof Science signaling, 2015-12, Vol.8 (406), p.ra126-ra126
issn 1945-0877
1937-9145
language eng
recordid cdi_proquest_miscellaneous_1794495509
source MEDLINE; Science Magazine
subjects Animals
DEAD Box Protein 58
DEAD-box RNA Helicases - biosynthesis
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - immunology
Dogs
HEK293 Cells
Humans
Immunity, Innate
Influenza A Virus, H5N1 Subtype - physiology
Influenza virus
Influenza, Human - genetics
Influenza, Human - immunology
Influenza, Human - metabolism
Madin Darby Canine Kidney Cells
MicroRNAs - genetics
MicroRNAs - immunology
MicroRNAs - metabolism
Newcastle disease virus
Receptors, Immunologic
RNA, Viral - biosynthesis
RNA, Viral - genetics
RNA, Viral - immunology
Signal Transduction - genetics
Signal Transduction - immunology
Viral Proteins - genetics
Viral Proteins - immunology
Viral Proteins - metabolism
Virus Replication - physiology
title The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20microRNA%20miR-485%20targets%20host%20and%20influenza%20virus%20transcripts%20to%20regulate%20antiviral%20immunity%20and%20restrict%20viral%20replication&rft.jtitle=Science%20signaling&rft.au=Ingle,%20Harshad&rft.date=2015-12-08&rft.volume=8&rft.issue=406&rft.spage=ra126&rft.epage=ra126&rft.pages=ra126-ra126&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.aab3183&rft_dat=%3Cproquest_cross%3E1747314826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1747314826&rft_id=info:pmid/26645583&rfr_iscdi=true