Guided ultrasound calibration: where, how, and how many calibration fiducials
Purpose Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration f...
Gespeichert in:
Veröffentlicht in: | International journal for computer assisted radiology and surgery 2016-06, Vol.11 (6), p.889-898 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 6 |
container_start_page | 889 |
container_title | International journal for computer assisted radiology and surgery |
container_volume | 11 |
creator | Chen, Elvis C. S. Peters, Terry M. Ma, Burton |
description | Purpose
Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE.
Methods
We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE.
Results
Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework.
Conclusion
We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements. |
doi_str_mv | 10.1007/s11548-016-1390-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1794473325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1794473325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlYfwI3M0kVHc51M3EnRKlTcdB8yudgpc6lJQ-nbmzK1uHJ1Dpzv_-F8ANwi-IAg5I8BIUbLHKIiR0TAnJ-BMSoLlBcUi_PTjuAIXIWwhpAyTtglGGEOSSmKYgw-5rE21mSx2XoV-tiZTKumrrza1n33lO1W1ttptup300ylY1qyVnX7v1TmahN1rZpwDS5cGvbmOCdg-fqynL3li8_5--x5kWtC6TZnhhXEYU6FcIJgA7XgpMQlLiBxlTHWasudEwwxXPCqdNpgpkVFGEEIVWQC7ofaje-_ow1b2dZB26ZRne1jkIgLSjkhmCUUDaj2fQjeOrnxdav8XiIoDxLlIFEmifIgUfKUuTvWx6q15pT4tZYAPAAhnbov6-W6j75LH__T-gM6bnw-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794473325</pqid></control><display><type>article</type><title>Guided ultrasound calibration: where, how, and how many calibration fiducials</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Elvis C. S. ; Peters, Terry M. ; Ma, Burton</creator><creatorcontrib>Chen, Elvis C. S. ; Peters, Terry M. ; Ma, Burton</creatorcontrib><description>Purpose
Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE.
Methods
We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE.
Results
Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework.
Conclusion
We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-016-1390-7</identifier><identifier>PMID: 27038966</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calibration ; Computer Imaging ; Computer Science ; Fiducial Markers ; Health Informatics ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Medicine ; Medicine & Public Health ; Models, Theoretical ; Original Article ; Pattern Recognition and Graphics ; Phantoms, Imaging ; Radiology ; Surgery ; Surgery, Computer-Assisted - methods ; Ultrasonography - methods ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2016-06, Vol.11 (6), p.889-898</ispartof><rights>CARS 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</citedby><cites>FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-016-1390-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-016-1390-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27038966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Elvis C. S.</creatorcontrib><creatorcontrib>Peters, Terry M.</creatorcontrib><creatorcontrib>Ma, Burton</creatorcontrib><title>Guided ultrasound calibration: where, how, and how many calibration fiducials</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose
Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE.
Methods
We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE.
Results
Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework.
Conclusion
We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Fiducial Markers</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Models, Theoretical</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Phantoms, Imaging</subject><subject>Radiology</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Ultrasonography - methods</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotlYfwI3M0kVHc51M3EnRKlTcdB8yudgpc6lJQ-nbmzK1uHJ1Dpzv_-F8ANwi-IAg5I8BIUbLHKIiR0TAnJ-BMSoLlBcUi_PTjuAIXIWwhpAyTtglGGEOSSmKYgw-5rE21mSx2XoV-tiZTKumrrza1n33lO1W1ttptup300ylY1qyVnX7v1TmahN1rZpwDS5cGvbmOCdg-fqynL3li8_5--x5kWtC6TZnhhXEYU6FcIJgA7XgpMQlLiBxlTHWasudEwwxXPCqdNpgpkVFGEEIVWQC7ofaje-_ow1b2dZB26ZRne1jkIgLSjkhmCUUDaj2fQjeOrnxdav8XiIoDxLlIFEmifIgUfKUuTvWx6q15pT4tZYAPAAhnbov6-W6j75LH__T-gM6bnw-</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Chen, Elvis C. S.</creator><creator>Peters, Terry M.</creator><creator>Ma, Burton</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Guided ultrasound calibration: where, how, and how many calibration fiducials</title><author>Chen, Elvis C. S. ; Peters, Terry M. ; Ma, Burton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Fiducial Markers</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Models, Theoretical</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Phantoms, Imaging</topic><topic>Radiology</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Ultrasonography - methods</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Elvis C. S.</creatorcontrib><creatorcontrib>Peters, Terry M.</creatorcontrib><creatorcontrib>Ma, Burton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Elvis C. S.</au><au>Peters, Terry M.</au><au>Ma, Burton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided ultrasound calibration: where, how, and how many calibration fiducials</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>889</spage><epage>898</epage><pages>889-898</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose
Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE.
Methods
We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE.
Results
Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework.
Conclusion
We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27038966</pmid><doi>10.1007/s11548-016-1390-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-6410 |
ispartof | International journal for computer assisted radiology and surgery, 2016-06, Vol.11 (6), p.889-898 |
issn | 1861-6410 1861-6429 |
language | eng |
recordid | cdi_proquest_miscellaneous_1794473325 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Calibration Computer Imaging Computer Science Fiducial Markers Health Informatics Humans Imaging Imaging, Three-Dimensional - methods Medicine Medicine & Public Health Models, Theoretical Original Article Pattern Recognition and Graphics Phantoms, Imaging Radiology Surgery Surgery, Computer-Assisted - methods Ultrasonography - methods Vision |
title | Guided ultrasound calibration: where, how, and how many calibration fiducials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20ultrasound%20calibration:%20where,%20how,%20and%20how%20many%20calibration%20fiducials&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Chen,%20Elvis%20C.%20S.&rft.date=2016-06-01&rft.volume=11&rft.issue=6&rft.spage=889&rft.epage=898&rft.pages=889-898&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-016-1390-7&rft_dat=%3Cproquest_cross%3E1794473325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794473325&rft_id=info:pmid/27038966&rfr_iscdi=true |