Guided ultrasound calibration: where, how, and how many calibration fiducials

Purpose Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2016-06, Vol.11 (6), p.889-898
Hauptverfasser: Chen, Elvis C. S., Peters, Terry M., Ma, Burton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 6
container_start_page 889
container_title International journal for computer assisted radiology and surgery
container_volume 11
creator Chen, Elvis C. S.
Peters, Terry M.
Ma, Burton
description Purpose Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE. Methods We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE. Results Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework. Conclusion We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.
doi_str_mv 10.1007/s11548-016-1390-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1794473325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1794473325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlYfwI3M0kVHc51M3EnRKlTcdB8yudgpc6lJQ-nbmzK1uHJ1Dpzv_-F8ANwi-IAg5I8BIUbLHKIiR0TAnJ-BMSoLlBcUi_PTjuAIXIWwhpAyTtglGGEOSSmKYgw-5rE21mSx2XoV-tiZTKumrrza1n33lO1W1ttptup300ylY1qyVnX7v1TmahN1rZpwDS5cGvbmOCdg-fqynL3li8_5--x5kWtC6TZnhhXEYU6FcIJgA7XgpMQlLiBxlTHWasudEwwxXPCqdNpgpkVFGEEIVWQC7ofaje-_ow1b2dZB26ZRne1jkIgLSjkhmCUUDaj2fQjeOrnxdav8XiIoDxLlIFEmifIgUfKUuTvWx6q15pT4tZYAPAAhnbov6-W6j75LH__T-gM6bnw-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794473325</pqid></control><display><type>article</type><title>Guided ultrasound calibration: where, how, and how many calibration fiducials</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Elvis C. S. ; Peters, Terry M. ; Ma, Burton</creator><creatorcontrib>Chen, Elvis C. S. ; Peters, Terry M. ; Ma, Burton</creatorcontrib><description>Purpose Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE. Methods We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE. Results Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework. Conclusion We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-016-1390-7</identifier><identifier>PMID: 27038966</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Calibration ; Computer Imaging ; Computer Science ; Fiducial Markers ; Health Informatics ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Medicine ; Medicine &amp; Public Health ; Models, Theoretical ; Original Article ; Pattern Recognition and Graphics ; Phantoms, Imaging ; Radiology ; Surgery ; Surgery, Computer-Assisted - methods ; Ultrasonography - methods ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2016-06, Vol.11 (6), p.889-898</ispartof><rights>CARS 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</citedby><cites>FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-016-1390-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-016-1390-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27038966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Elvis C. S.</creatorcontrib><creatorcontrib>Peters, Terry M.</creatorcontrib><creatorcontrib>Ma, Burton</creatorcontrib><title>Guided ultrasound calibration: where, how, and how many calibration fiducials</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE. Methods We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE. Results Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework. Conclusion We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Fiducial Markers</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Theoretical</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Phantoms, Imaging</subject><subject>Radiology</subject><subject>Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Ultrasonography - methods</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotlYfwI3M0kVHc51M3EnRKlTcdB8yudgpc6lJQ-nbmzK1uHJ1Dpzv_-F8ANwi-IAg5I8BIUbLHKIiR0TAnJ-BMSoLlBcUi_PTjuAIXIWwhpAyTtglGGEOSSmKYgw-5rE21mSx2XoV-tiZTKumrrza1n33lO1W1ttptup300ylY1qyVnX7v1TmahN1rZpwDS5cGvbmOCdg-fqynL3li8_5--x5kWtC6TZnhhXEYU6FcIJgA7XgpMQlLiBxlTHWasudEwwxXPCqdNpgpkVFGEEIVWQC7ofaje-_ow1b2dZB26ZRne1jkIgLSjkhmCUUDaj2fQjeOrnxdav8XiIoDxLlIFEmifIgUfKUuTvWx6q15pT4tZYAPAAhnbov6-W6j75LH__T-gM6bnw-</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Chen, Elvis C. S.</creator><creator>Peters, Terry M.</creator><creator>Ma, Burton</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Guided ultrasound calibration: where, how, and how many calibration fiducials</title><author>Chen, Elvis C. S. ; Peters, Terry M. ; Ma, Burton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5d563f27499f932d0c9738282603fbddeece7ff9515267b8fcd25c9b353111b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Fiducial Markers</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Theoretical</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Phantoms, Imaging</topic><topic>Radiology</topic><topic>Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Ultrasonography - methods</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Elvis C. S.</creatorcontrib><creatorcontrib>Peters, Terry M.</creatorcontrib><creatorcontrib>Ma, Burton</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Elvis C. S.</au><au>Peters, Terry M.</au><au>Ma, Burton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided ultrasound calibration: where, how, and how many calibration fiducials</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>889</spage><epage>898</epage><pages>889-898</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE. Methods We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE. Results Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework. Conclusion We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27038966</pmid><doi>10.1007/s11548-016-1390-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2016-06, Vol.11 (6), p.889-898
issn 1861-6410
1861-6429
language eng
recordid cdi_proquest_miscellaneous_1794473325
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Calibration
Computer Imaging
Computer Science
Fiducial Markers
Health Informatics
Humans
Imaging
Imaging, Three-Dimensional - methods
Medicine
Medicine & Public Health
Models, Theoretical
Original Article
Pattern Recognition and Graphics
Phantoms, Imaging
Radiology
Surgery
Surgery, Computer-Assisted - methods
Ultrasonography - methods
Vision
title Guided ultrasound calibration: where, how, and how many calibration fiducials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20ultrasound%20calibration:%20where,%20how,%20and%20how%20many%20calibration%20fiducials&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Chen,%20Elvis%20C.%20S.&rft.date=2016-06-01&rft.volume=11&rft.issue=6&rft.spage=889&rft.epage=898&rft.pages=889-898&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-016-1390-7&rft_dat=%3Cproquest_cross%3E1794473325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1794473325&rft_id=info:pmid/27038966&rfr_iscdi=true