Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis

We performed weighted gene coexpression network analysis (WGCNA) to gain insights into the molecular aspects of hepatocellular carcinoma (HCC). Raw microarray datasets (including 488 samples) were downloaded from the Gene Expression Omnibus (GEO) website. Data were normalized using the RMA algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of medicine 2016-06, Vol.10 (2), p.183-190
Hauptverfasser: Xu, Xinsen, Zhou, Yanyan, Miao, Runchen, Chen, Wei, Qu, Kai, Pang, Qing, Liu, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 2
container_start_page 183
container_title Frontiers of medicine
container_volume 10
creator Xu, Xinsen
Zhou, Yanyan
Miao, Runchen
Chen, Wei
Qu, Kai
Pang, Qing
Liu, Chang
description We performed weighted gene coexpression network analysis (WGCNA) to gain insights into the molecular aspects of hepatocellular carcinoma (HCC). Raw microarray datasets (including 488 samples) were downloaded from the Gene Expression Omnibus (GEO) website. Data were normalized using the RMA algorithm. We utilized the WGCNA to identify the coexpressed genes (modules) after non-specific filtering. Correlation and survival analyses were conducted using the modules, and gene ontology (GO) enrichment was applied to explore the possible mechanisms. Eight distinct modules were identified by the WGCNA. Pink and red modules were associated with liver function, whereas turquoise and black modules were inversely correlated with tumor staging. Poor outcomes were found in the low expression group in the turquoise module and in the high expression group in the red module. In addition, GO enrichment analysis suggested that inflammation, immune, virus-related, and interferon-mediated pathways were enriched in the turquoise module. Several potential biomarkers, such as cyclin-dependent kinase 1 (CDK1), topoisomerase 2α (TOP2A), and serpin peptidase inhibitor clade C (antithrombin) member 1 (SERPINC1), were also identified. In conclusion, gene signatures identified from the genome-based assays could contribute to HCC stratification. WGCNA was able to identify significant groups of genes associated with cancer prognosis.
doi_str_mv 10.1007/s11684-016-0440-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793907559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669386067</cqvip_id><sourcerecordid>1793907559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-bc189d372fb208a17a509511620b2365d82d60cc2f5deda7133f787c3676a803</originalsourceid><addsrcrecordid>eNp9kU2O1DAQhS0EYkbDHIANsmDDJuC_2MkSjfiTRmLTe8ttV7o9JHGmnAzMVTgLd-IKuEnTQizGG1vy917VqyLkOWdvOGPmbeZcN6piXFdMKVapR-RcsLaumBD149ObmzNymfMNK0dpbtr2KTkThtWF4ucENujG7DFOc0yj6-mQwtJDpgi9myHQOdE9TG5OHvp-6R1S79DHMQ2O5gXv4p3rf_38QX2C7xNCzsWGjjB_S_iVuuJ4n2N-Rp50rs9webwvyObD-83Vp-r6y8fPV--uK69UM1dbz5s2SCO6rWCN48bVJUTJKdhWSF2HRgTNvBddHSA4w6XsTGO81Ea7hskL8nq1nTDdLpBnO8R86NuNkJZsS3rZMlPXbUFf_YfepAVLu4VqFVfaGCYKxVfKY8oZobMTxsHhveXMHrZg1y3YsgV72IJVRfPi6LxsBwgnxd-ZF0CsQC5f4w7wn9IPuDaraB93e0AIf2ZtO0zjHAEflr48htincXdbSp560rqVjWbayN8I1rGd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941467702</pqid></control><display><type>article</type><title>Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><creator>Xu, Xinsen ; Zhou, Yanyan ; Miao, Runchen ; Chen, Wei ; Qu, Kai ; Pang, Qing ; Liu, Chang</creator><creatorcontrib>Xu, Xinsen ; Zhou, Yanyan ; Miao, Runchen ; Chen, Wei ; Qu, Kai ; Pang, Qing ; Liu, Chang</creatorcontrib><description>We performed weighted gene coexpression network analysis (WGCNA) to gain insights into the molecular aspects of hepatocellular carcinoma (HCC). Raw microarray datasets (including 488 samples) were downloaded from the Gene Expression Omnibus (GEO) website. Data were normalized using the RMA algorithm. We utilized the WGCNA to identify the coexpressed genes (modules) after non-specific filtering. Correlation and survival analyses were conducted using the modules, and gene ontology (GO) enrichment was applied to explore the possible mechanisms. Eight distinct modules were identified by the WGCNA. Pink and red modules were associated with liver function, whereas turquoise and black modules were inversely correlated with tumor staging. Poor outcomes were found in the low expression group in the turquoise module and in the high expression group in the red module. In addition, GO enrichment analysis suggested that inflammation, immune, virus-related, and interferon-mediated pathways were enriched in the turquoise module. Several potential biomarkers, such as cyclin-dependent kinase 1 (CDK1), topoisomerase 2α (TOP2A), and serpin peptidase inhibitor clade C (antithrombin) member 1 (SERPINC1), were also identified. In conclusion, gene signatures identified from the genome-based assays could contribute to HCC stratification. WGCNA was able to identify significant groups of genes associated with cancer prognosis.</description><identifier>ISSN: 2095-0217</identifier><identifier>EISSN: 2095-0225</identifier><identifier>DOI: 10.1007/s11684-016-0440-4</identifier><identifier>PMID: 27052251</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Algorithms ; Carcinoma, Hepatocellular - genetics ; coexpression ; Cyclin-dependent kinases ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks ; hepatocellular carcinoma ; Humans ; Kinases ; Liver cancer ; Liver Neoplasms - genetics ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; microarray ; module ; Oligonucleotide Array Sequence Analysis ; Prognosis ; Regression Analysis ; Research Article ; 丝氨酸蛋白酶抑制剂 ; 共表达 ; 基因表达 ; 模块 ; 细胞周期蛋白依赖性激酶 ; 网络分析 ; 肝癌 ; 转录</subject><ispartof>Frontiers of medicine, 2016-06, Vol.10 (2), p.183-190</ispartof><rights>Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Frontiers of Medicine is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-bc189d372fb208a17a509511620b2365d82d60cc2f5deda7133f787c3676a803</citedby><cites>FETCH-LOGICAL-c448t-bc189d372fb208a17a509511620b2365d82d60cc2f5deda7133f787c3676a803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71235X/71235X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11684-016-0440-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11684-016-0440-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27052251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xinsen</creatorcontrib><creatorcontrib>Zhou, Yanyan</creatorcontrib><creatorcontrib>Miao, Runchen</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Qu, Kai</creatorcontrib><creatorcontrib>Pang, Qing</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><title>Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis</title><title>Frontiers of medicine</title><addtitle>Front. Med</addtitle><addtitle>Frontiers of Medicine</addtitle><description>We performed weighted gene coexpression network analysis (WGCNA) to gain insights into the molecular aspects of hepatocellular carcinoma (HCC). Raw microarray datasets (including 488 samples) were downloaded from the Gene Expression Omnibus (GEO) website. Data were normalized using the RMA algorithm. We utilized the WGCNA to identify the coexpressed genes (modules) after non-specific filtering. Correlation and survival analyses were conducted using the modules, and gene ontology (GO) enrichment was applied to explore the possible mechanisms. Eight distinct modules were identified by the WGCNA. Pink and red modules were associated with liver function, whereas turquoise and black modules were inversely correlated with tumor staging. Poor outcomes were found in the low expression group in the turquoise module and in the high expression group in the red module. In addition, GO enrichment analysis suggested that inflammation, immune, virus-related, and interferon-mediated pathways were enriched in the turquoise module. Several potential biomarkers, such as cyclin-dependent kinase 1 (CDK1), topoisomerase 2α (TOP2A), and serpin peptidase inhibitor clade C (antithrombin) member 1 (SERPINC1), were also identified. In conclusion, gene signatures identified from the genome-based assays could contribute to HCC stratification. WGCNA was able to identify significant groups of genes associated with cancer prognosis.</description><subject>Algorithms</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>coexpression</subject><subject>Cyclin-dependent kinases</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks</subject><subject>hepatocellular carcinoma</subject><subject>Humans</subject><subject>Kinases</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - genetics</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>microarray</subject><subject>module</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Prognosis</subject><subject>Regression Analysis</subject><subject>Research Article</subject><subject>丝氨酸蛋白酶抑制剂</subject><subject>共表达</subject><subject>基因表达</subject><subject>模块</subject><subject>细胞周期蛋白依赖性激酶</subject><subject>网络分析</subject><subject>肝癌</subject><subject>转录</subject><issn>2095-0217</issn><issn>2095-0225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU2O1DAQhS0EYkbDHIANsmDDJuC_2MkSjfiTRmLTe8ttV7o9JHGmnAzMVTgLd-IKuEnTQizGG1vy917VqyLkOWdvOGPmbeZcN6piXFdMKVapR-RcsLaumBD149ObmzNymfMNK0dpbtr2KTkThtWF4ucENujG7DFOc0yj6-mQwtJDpgi9myHQOdE9TG5OHvp-6R1S79DHMQ2O5gXv4p3rf_38QX2C7xNCzsWGjjB_S_iVuuJ4n2N-Rp50rs9webwvyObD-83Vp-r6y8fPV--uK69UM1dbz5s2SCO6rWCN48bVJUTJKdhWSF2HRgTNvBddHSA4w6XsTGO81Ea7hskL8nq1nTDdLpBnO8R86NuNkJZsS3rZMlPXbUFf_YfepAVLu4VqFVfaGCYKxVfKY8oZobMTxsHhveXMHrZg1y3YsgV72IJVRfPi6LxsBwgnxd-ZF0CsQC5f4w7wn9IPuDaraB93e0AIf2ZtO0zjHAEflr48htincXdbSp560rqVjWbayN8I1rGd</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Xu, Xinsen</creator><creator>Zhou, Yanyan</creator><creator>Miao, Runchen</creator><creator>Chen, Wei</creator><creator>Qu, Kai</creator><creator>Pang, Qing</creator><creator>Liu, Chang</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20160601</creationdate><title>Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis</title><author>Xu, Xinsen ; Zhou, Yanyan ; Miao, Runchen ; Chen, Wei ; Qu, Kai ; Pang, Qing ; Liu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-bc189d372fb208a17a509511620b2365d82d60cc2f5deda7133f787c3676a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>coexpression</topic><topic>Cyclin-dependent kinases</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks</topic><topic>hepatocellular carcinoma</topic><topic>Humans</topic><topic>Kinases</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - genetics</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>microarray</topic><topic>module</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Prognosis</topic><topic>Regression Analysis</topic><topic>Research Article</topic><topic>丝氨酸蛋白酶抑制剂</topic><topic>共表达</topic><topic>基因表达</topic><topic>模块</topic><topic>细胞周期蛋白依赖性激酶</topic><topic>网络分析</topic><topic>肝癌</topic><topic>转录</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xinsen</creatorcontrib><creatorcontrib>Zhou, Yanyan</creatorcontrib><creatorcontrib>Miao, Runchen</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Qu, Kai</creatorcontrib><creatorcontrib>Pang, Qing</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Frontiers of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xinsen</au><au>Zhou, Yanyan</au><au>Miao, Runchen</au><au>Chen, Wei</au><au>Qu, Kai</au><au>Pang, Qing</au><au>Liu, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis</atitle><jtitle>Frontiers of medicine</jtitle><stitle>Front. Med</stitle><addtitle>Frontiers of Medicine</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>10</volume><issue>2</issue><spage>183</spage><epage>190</epage><pages>183-190</pages><issn>2095-0217</issn><eissn>2095-0225</eissn><abstract>We performed weighted gene coexpression network analysis (WGCNA) to gain insights into the molecular aspects of hepatocellular carcinoma (HCC). Raw microarray datasets (including 488 samples) were downloaded from the Gene Expression Omnibus (GEO) website. Data were normalized using the RMA algorithm. We utilized the WGCNA to identify the coexpressed genes (modules) after non-specific filtering. Correlation and survival analyses were conducted using the modules, and gene ontology (GO) enrichment was applied to explore the possible mechanisms. Eight distinct modules were identified by the WGCNA. Pink and red modules were associated with liver function, whereas turquoise and black modules were inversely correlated with tumor staging. Poor outcomes were found in the low expression group in the turquoise module and in the high expression group in the red module. In addition, GO enrichment analysis suggested that inflammation, immune, virus-related, and interferon-mediated pathways were enriched in the turquoise module. Several potential biomarkers, such as cyclin-dependent kinase 1 (CDK1), topoisomerase 2α (TOP2A), and serpin peptidase inhibitor clade C (antithrombin) member 1 (SERPINC1), were also identified. In conclusion, gene signatures identified from the genome-based assays could contribute to HCC stratification. WGCNA was able to identify significant groups of genes associated with cancer prognosis.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><pmid>27052251</pmid><doi>10.1007/s11684-016-0440-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-0217
ispartof Frontiers of medicine, 2016-06, Vol.10 (2), p.183-190
issn 2095-0217
2095-0225
language eng
recordid cdi_proquest_miscellaneous_1793907559
source MEDLINE; SpringerLink Journals (MCLS)
subjects Algorithms
Carcinoma, Hepatocellular - genetics
coexpression
Cyclin-dependent kinases
Gene expression
Gene Expression Profiling
Gene Regulatory Networks
hepatocellular carcinoma
Humans
Kinases
Liver cancer
Liver Neoplasms - genetics
Medical prognosis
Medicine
Medicine & Public Health
microarray
module
Oligonucleotide Array Sequence Analysis
Prognosis
Regression Analysis
Research Article
丝氨酸蛋白酶抑制剂
共表达
基因表达
模块
细胞周期蛋白依赖性激酶
网络分析
肝癌
转录
title Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20modules%20related%20to%20hepatocellular%20carcinoma%20survival%EF%BC%9A%20coexpression%20network%20analysis&rft.jtitle=Frontiers%20of%20medicine&rft.au=Xu,%20Xinsen&rft.date=2016-06-01&rft.volume=10&rft.issue=2&rft.spage=183&rft.epage=190&rft.pages=183-190&rft.issn=2095-0217&rft.eissn=2095-0225&rft_id=info:doi/10.1007/s11684-016-0440-4&rft_dat=%3Cproquest_cross%3E1793907559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941467702&rft_id=info:pmid/27052251&rft_cqvip_id=669386067&rfr_iscdi=true