Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to real...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2016-02, Vol.105, p.347-354
Hauptverfasser: Nagasako, Naoyuki, Asahi, Ryoji, Isheim, Dieter, Seidman, David N., Kuramoto, Shigeru, Furuta, Tadahiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue
container_start_page 347
container_title Acta materialia
container_volume 105
creator Nagasako, Naoyuki
Asahi, Ryoji
Isheim, Dieter
Seidman, David N.
Kuramoto, Shigeru
Furuta, Tadahiko
description A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations. [Display omitted]
doi_str_mv 10.1016/j.actamat.2015.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793297729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541530121X</els_id><sourcerecordid>1793297729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-eea06d3eb95e16799e04ff262aab88ca90c5dcbc6516a09a3c85f2be975fcabb3</originalsourceid><addsrcrecordid>eNqFUE1LxDAULKLguvoThBy9tCZp0268iIhfoHjRq-H19UWytJs1ScX993bdvXt6w7yZgZksOxe8EFzUl8sCMMEAqZBcqELIggtxkM3EoilzWanycMKl0nldqeo4O4lxybmQTcVn2ceLw-Aj-rVDFtPYbZi37HMc8oES9Az63m_iFbthwfe0_aUAOIGfzSetmPWBdS72HiE5v8ptIGIdTfTwR5xmRxb6SGf7O8_e7-_ebh_z59eHp9ub5xzLSqacCHjdldRqRaJutCZeWStrCdAuFgiao-qwxVqJGriGEhfKypZ0oyxC25bz7GKXuw7-a6SYzOAiUt_DivwYjWh0KXXTSD1J1U667R0DWbMOboCwMYKb7Z5mafZ7mu2eRkgz7Tn5rnc-mnp8OwomoqMVUucCYTKdd_8k_AI9foM9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793297729</pqid></control><display><type>article</type><title>Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nagasako, Naoyuki ; Asahi, Ryoji ; Isheim, Dieter ; Seidman, David N. ; Kuramoto, Shigeru ; Furuta, Tadahiko</creator><creatorcontrib>Nagasako, Naoyuki ; Asahi, Ryoji ; Isheim, Dieter ; Seidman, David N. ; Kuramoto, Shigeru ; Furuta, Tadahiko</creatorcontrib><description>A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2015.12.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alloys ; Deformation mechanisms ; Dislocation-free deformation mechanism ; Dislocations ; First-principles calculation ; Mathematical analysis ; Nanostructure ; Three dimensional ; Three-dimensional atom-prove tomography ; Ti alloys ; Trace elements ; Zirconium</subject><ispartof>Acta materialia, 2016-02, Vol.105, p.347-354</ispartof><rights>2015 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-eea06d3eb95e16799e04ff262aab88ca90c5dcbc6516a09a3c85f2be975fcabb3</citedby><cites>FETCH-LOGICAL-c342t-eea06d3eb95e16799e04ff262aab88ca90c5dcbc6516a09a3c85f2be975fcabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2015.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Nagasako, Naoyuki</creatorcontrib><creatorcontrib>Asahi, Ryoji</creatorcontrib><creatorcontrib>Isheim, Dieter</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Kuramoto, Shigeru</creatorcontrib><creatorcontrib>Furuta, Tadahiko</creatorcontrib><title>Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation</title><title>Acta materialia</title><description>A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations. [Display omitted]</description><subject>Alloys</subject><subject>Deformation mechanisms</subject><subject>Dislocation-free deformation mechanism</subject><subject>Dislocations</subject><subject>First-principles calculation</subject><subject>Mathematical analysis</subject><subject>Nanostructure</subject><subject>Three dimensional</subject><subject>Three-dimensional atom-prove tomography</subject><subject>Ti alloys</subject><subject>Trace elements</subject><subject>Zirconium</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAULKLguvoThBy9tCZp0268iIhfoHjRq-H19UWytJs1ScX993bdvXt6w7yZgZksOxe8EFzUl8sCMMEAqZBcqELIggtxkM3EoilzWanycMKl0nldqeo4O4lxybmQTcVn2ceLw-Aj-rVDFtPYbZi37HMc8oES9Az63m_iFbthwfe0_aUAOIGfzSetmPWBdS72HiE5v8ptIGIdTfTwR5xmRxb6SGf7O8_e7-_ebh_z59eHp9ub5xzLSqacCHjdldRqRaJutCZeWStrCdAuFgiao-qwxVqJGriGEhfKypZ0oyxC25bz7GKXuw7-a6SYzOAiUt_DivwYjWh0KXXTSD1J1U667R0DWbMOboCwMYKb7Z5mafZ7mu2eRkgz7Tn5rnc-mnp8OwomoqMVUucCYTKdd_8k_AI9foM9</recordid><startdate>20160215</startdate><enddate>20160215</enddate><creator>Nagasako, Naoyuki</creator><creator>Asahi, Ryoji</creator><creator>Isheim, Dieter</creator><creator>Seidman, David N.</creator><creator>Kuramoto, Shigeru</creator><creator>Furuta, Tadahiko</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160215</creationdate><title>Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation</title><author>Nagasako, Naoyuki ; Asahi, Ryoji ; Isheim, Dieter ; Seidman, David N. ; Kuramoto, Shigeru ; Furuta, Tadahiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-eea06d3eb95e16799e04ff262aab88ca90c5dcbc6516a09a3c85f2be975fcabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Deformation mechanisms</topic><topic>Dislocation-free deformation mechanism</topic><topic>Dislocations</topic><topic>First-principles calculation</topic><topic>Mathematical analysis</topic><topic>Nanostructure</topic><topic>Three dimensional</topic><topic>Three-dimensional atom-prove tomography</topic><topic>Ti alloys</topic><topic>Trace elements</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagasako, Naoyuki</creatorcontrib><creatorcontrib>Asahi, Ryoji</creatorcontrib><creatorcontrib>Isheim, Dieter</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><creatorcontrib>Kuramoto, Shigeru</creatorcontrib><creatorcontrib>Furuta, Tadahiko</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagasako, Naoyuki</au><au>Asahi, Ryoji</au><au>Isheim, Dieter</au><au>Seidman, David N.</au><au>Kuramoto, Shigeru</au><au>Furuta, Tadahiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation</atitle><jtitle>Acta materialia</jtitle><date>2016-02-15</date><risdate>2016</risdate><volume>105</volume><spage>347</spage><epage>354</epage><pages>347-354</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2015.12.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2016-02, Vol.105, p.347-354
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1793297729
source Elsevier ScienceDirect Journals Complete
subjects Alloys
Deformation mechanisms
Dislocation-free deformation mechanism
Dislocations
First-principles calculation
Mathematical analysis
Nanostructure
Three dimensional
Three-dimensional atom-prove tomography
Ti alloys
Trace elements
Zirconium
title Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20study%20of%20gum-metal%20alloys:%20A%20role%20of%20trace%20oxygen%20for%20dislocation-free%20deformation&rft.jtitle=Acta%20materialia&rft.au=Nagasako,%20Naoyuki&rft.date=2016-02-15&rft.volume=105&rft.spage=347&rft.epage=354&rft.pages=347-354&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2015.12.011&rft_dat=%3Cproquest_cross%3E1793297729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793297729&rft_id=info:pmid/&rft_els_id=S135964541530121X&rfr_iscdi=true