Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO sub(3)(NO sub(3)) sub(2 ) super(-)?
Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-03, Vol.54 (5), p.2367-2373 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2373 |
---|---|
container_issue | 5 |
container_start_page | 2367 |
container_title | Inorganic chemistry |
container_volume | 54 |
creator | Maurice, Remi Renault, Eric Gong, Yu Rutkowski, Philip X Gibson, John K |
description | Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated in a quadrupole ion trap and subjected to collision-induced dissociation (CID). CID of complexes of the general formula PuO sub(x)(NO sub(3)) sub(y ) super(-) resulted in the elimination of NO sub(2) to produce PuO sub(x+1)(NO sub(3)) sub(y-1) super(-), which in most cases corresponds to an increase in the oxidation state of plutonium. Plutonyl species, Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-), were produced from Pu super(III)(NO sub(3)) sub(4) super(-) and Pu super(IV)(NO sub(3)) sub(5) super(-), respectively, by the elimination of two NO sub(2) molecules. CID of Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) resulted in NO sub(2) elimination to yield PuO sub(3)(NO sub(3)) sub(2 ) super(-), in which the oxidation state of plutonium could be VII, a known oxidation state in condensed phase but not yet in the gas phase. Density functional theory confirmed the nature of Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) as plutonyl(V/VI) cores coordinated by bidentate equatorial nitrate ligands. The computed structure of PuO sub(3)(NO sub(3)) sub(2 ) super(-) is essentially a plutonyl(VI) core, Pu super(VI)O sub(2) super(2+), coordinated in the equatorial plane by two nitrate ligands and one radical oxygen atom. The computations indicate that in the ground spinEMDASHorbit free state of PuO sub(3)(NO sub(3)) sub(2 ) super(-), the unpaired electron of the oxygen atom is antiferromagnetically coupled to the spin-triplet state of the plutonyl core. The results indicate that Pu(VII) is not a readily accessible oxidation state in the gas phase, despite that it is stable in solution and solids, but rather that a Pu(VI)O. bonding configuration is favored, in which an oxygen radical is involved. |
doi_str_mv | 10.1021/ic502969w |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793297547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793297547</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17932975473</originalsourceid><addsrcrecordid>eNqVyr1OwzAUhmEPRaL8DNzBGZMhYDttIrMwVKB2KZXKXrnpqXDl2MHnGKi4eQQqF8D0vNL3CXGj5K2SWt25biq1aczHSIyl1LJSTWPOxQXRQUpp6kkzFl_rY-BXJEdgww7WnHLHOSFB3MPKZ47h6GHpOFlGmMV-8PiJdA8LOs0u9zDHge279RgYXIBVfgbK26Iui-Vflb9q-HHAVFTlw5U421tPeH3yUhRPjy-zeTWk-JaReNM76tB7GzBm2qjW1Nq000lb_-P6DQ18U24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793297547</pqid></control><display><type>article</type><title>Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO sub(3)(NO sub(3)) sub(2 ) super(-)?</title><source>ACS Publications</source><creator>Maurice, Remi ; Renault, Eric ; Gong, Yu ; Rutkowski, Philip X ; Gibson, John K</creator><creatorcontrib>Maurice, Remi ; Renault, Eric ; Gong, Yu ; Rutkowski, Philip X ; Gibson, John K</creatorcontrib><description>Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated in a quadrupole ion trap and subjected to collision-induced dissociation (CID). CID of complexes of the general formula PuO sub(x)(NO sub(3)) sub(y ) super(-) resulted in the elimination of NO sub(2) to produce PuO sub(x+1)(NO sub(3)) sub(y-1) super(-), which in most cases corresponds to an increase in the oxidation state of plutonium. Plutonyl species, Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-), were produced from Pu super(III)(NO sub(3)) sub(4) super(-) and Pu super(IV)(NO sub(3)) sub(5) super(-), respectively, by the elimination of two NO sub(2) molecules. CID of Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) resulted in NO sub(2) elimination to yield PuO sub(3)(NO sub(3)) sub(2 ) super(-), in which the oxidation state of plutonium could be VII, a known oxidation state in condensed phase but not yet in the gas phase. Density functional theory confirmed the nature of Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) as plutonyl(V/VI) cores coordinated by bidentate equatorial nitrate ligands. The computed structure of PuO sub(3)(NO sub(3)) sub(2 ) super(-) is essentially a plutonyl(VI) core, Pu super(VI)O sub(2) super(2+), coordinated in the equatorial plane by two nitrate ligands and one radical oxygen atom. The computations indicate that in the ground spinEMDASHorbit free state of PuO sub(3)(NO sub(3)) sub(2 ) super(-), the unpaired electron of the oxygen atom is antiferromagnetically coupled to the spin-triplet state of the plutonyl core. The results indicate that Pu(VII) is not a readily accessible oxidation state in the gas phase, despite that it is stable in solution and solids, but rather that a Pu(VI)O. bonding configuration is favored, in which an oxygen radical is involved.</description><identifier>ISSN: 0020-1669</identifier><identifier>DOI: 10.1021/ic502969w</identifier><language>eng</language><subject>Computation ; Mathematical models ; Nitrates ; Nitrogen dioxide ; Oxygen atoms ; Plutonium ; Radicals ; Valence</subject><ispartof>Inorganic chemistry, 2015-03, Vol.54 (5), p.2367-2373</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maurice, Remi</creatorcontrib><creatorcontrib>Renault, Eric</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Rutkowski, Philip X</creatorcontrib><creatorcontrib>Gibson, John K</creatorcontrib><title>Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO sub(3)(NO sub(3)) sub(2 ) super(-)?</title><title>Inorganic chemistry</title><description>Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated in a quadrupole ion trap and subjected to collision-induced dissociation (CID). CID of complexes of the general formula PuO sub(x)(NO sub(3)) sub(y ) super(-) resulted in the elimination of NO sub(2) to produce PuO sub(x+1)(NO sub(3)) sub(y-1) super(-), which in most cases corresponds to an increase in the oxidation state of plutonium. Plutonyl species, Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-), were produced from Pu super(III)(NO sub(3)) sub(4) super(-) and Pu super(IV)(NO sub(3)) sub(5) super(-), respectively, by the elimination of two NO sub(2) molecules. CID of Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) resulted in NO sub(2) elimination to yield PuO sub(3)(NO sub(3)) sub(2 ) super(-), in which the oxidation state of plutonium could be VII, a known oxidation state in condensed phase but not yet in the gas phase. Density functional theory confirmed the nature of Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) as plutonyl(V/VI) cores coordinated by bidentate equatorial nitrate ligands. The computed structure of PuO sub(3)(NO sub(3)) sub(2 ) super(-) is essentially a plutonyl(VI) core, Pu super(VI)O sub(2) super(2+), coordinated in the equatorial plane by two nitrate ligands and one radical oxygen atom. The computations indicate that in the ground spinEMDASHorbit free state of PuO sub(3)(NO sub(3)) sub(2 ) super(-), the unpaired electron of the oxygen atom is antiferromagnetically coupled to the spin-triplet state of the plutonyl core. The results indicate that Pu(VII) is not a readily accessible oxidation state in the gas phase, despite that it is stable in solution and solids, but rather that a Pu(VI)O. bonding configuration is favored, in which an oxygen radical is involved.</description><subject>Computation</subject><subject>Mathematical models</subject><subject>Nitrates</subject><subject>Nitrogen dioxide</subject><subject>Oxygen atoms</subject><subject>Plutonium</subject><subject>Radicals</subject><subject>Valence</subject><issn>0020-1669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVyr1OwzAUhmEPRaL8DNzBGZMhYDttIrMwVKB2KZXKXrnpqXDl2MHnGKi4eQQqF8D0vNL3CXGj5K2SWt25biq1aczHSIyl1LJSTWPOxQXRQUpp6kkzFl_rY-BXJEdgww7WnHLHOSFB3MPKZ47h6GHpOFlGmMV-8PiJdA8LOs0u9zDHge279RgYXIBVfgbK26Iui-Vflb9q-HHAVFTlw5U421tPeH3yUhRPjy-zeTWk-JaReNM76tB7GzBm2qjW1Nq000lb_-P6DQ18U24</recordid><startdate>20150302</startdate><enddate>20150302</enddate><creator>Maurice, Remi</creator><creator>Renault, Eric</creator><creator>Gong, Yu</creator><creator>Rutkowski, Philip X</creator><creator>Gibson, John K</creator><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150302</creationdate><title>Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO sub(3)(NO sub(3)) sub(2 ) super(-)?</title><author>Maurice, Remi ; Renault, Eric ; Gong, Yu ; Rutkowski, Philip X ; Gibson, John K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17932975473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Mathematical models</topic><topic>Nitrates</topic><topic>Nitrogen dioxide</topic><topic>Oxygen atoms</topic><topic>Plutonium</topic><topic>Radicals</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurice, Remi</creatorcontrib><creatorcontrib>Renault, Eric</creatorcontrib><creatorcontrib>Gong, Yu</creatorcontrib><creatorcontrib>Rutkowski, Philip X</creatorcontrib><creatorcontrib>Gibson, John K</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurice, Remi</au><au>Renault, Eric</au><au>Gong, Yu</au><au>Rutkowski, Philip X</au><au>Gibson, John K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO sub(3)(NO sub(3)) sub(2 ) super(-)?</atitle><jtitle>Inorganic chemistry</jtitle><date>2015-03-02</date><risdate>2015</risdate><volume>54</volume><issue>5</issue><spage>2367</spage><epage>2373</epage><pages>2367-2373</pages><issn>0020-1669</issn><abstract>Gas-phase plutonium nitrate anion complexes were produced by electrospray ionization (ESI) of a plutonium nitrate solution. The ESI mass spectrum included species with all four of the common oxidation states of plutonium: Pu(III), Pu(IV), Pu(V), and Pu(VI). Plutonium nitrate complexes were isolated in a quadrupole ion trap and subjected to collision-induced dissociation (CID). CID of complexes of the general formula PuO sub(x)(NO sub(3)) sub(y ) super(-) resulted in the elimination of NO sub(2) to produce PuO sub(x+1)(NO sub(3)) sub(y-1) super(-), which in most cases corresponds to an increase in the oxidation state of plutonium. Plutonyl species, Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-), were produced from Pu super(III)(NO sub(3)) sub(4) super(-) and Pu super(IV)(NO sub(3)) sub(5) super(-), respectively, by the elimination of two NO sub(2) molecules. CID of Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) resulted in NO sub(2) elimination to yield PuO sub(3)(NO sub(3)) sub(2 ) super(-), in which the oxidation state of plutonium could be VII, a known oxidation state in condensed phase but not yet in the gas phase. Density functional theory confirmed the nature of Pu super(V)O sub(2)(NO sub(3)) sub(2) super(-) and Pu super(VI)O sub(2)(NO sub(3)) sub(3) super(-) as plutonyl(V/VI) cores coordinated by bidentate equatorial nitrate ligands. The computed structure of PuO sub(3)(NO sub(3)) sub(2 ) super(-) is essentially a plutonyl(VI) core, Pu super(VI)O sub(2) super(2+), coordinated in the equatorial plane by two nitrate ligands and one radical oxygen atom. The computations indicate that in the ground spinEMDASHorbit free state of PuO sub(3)(NO sub(3)) sub(2 ) super(-), the unpaired electron of the oxygen atom is antiferromagnetically coupled to the spin-triplet state of the plutonyl core. The results indicate that Pu(VII) is not a readily accessible oxidation state in the gas phase, despite that it is stable in solution and solids, but rather that a Pu(VI)O. bonding configuration is favored, in which an oxygen radical is involved.</abstract><doi>10.1021/ic502969w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2015-03, Vol.54 (5), p.2367-2373 |
issn | 0020-1669 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793297547 |
source | ACS Publications |
subjects | Computation Mathematical models Nitrates Nitrogen dioxide Oxygen atoms Plutonium Radicals Valence |
title | Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO sub(3)(NO sub(3)) sub(2 ) super(-)? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Structures%20of%20Plutonyl%20Nitrate%20Complexes:%20Is%20Plutonium%20Heptavalent%20in%20PuO%20sub(3)(NO%20sub(3))%20sub(2%20)%20super(-)?&rft.jtitle=Inorganic%20chemistry&rft.au=Maurice,%20Remi&rft.date=2015-03-02&rft.volume=54&rft.issue=5&rft.spage=2367&rft.epage=2373&rft.pages=2367-2373&rft.issn=0020-1669&rft_id=info:doi/10.1021/ic502969w&rft_dat=%3Cproquest%3E1793297547%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793297547&rft_id=info:pmid/&rfr_iscdi=true |