A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol
Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones....
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-09, Vol.54 (17), p.8665-8672 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8672 |
---|---|
container_issue | 17 |
container_start_page | 8665 |
container_title | Inorganic chemistry |
container_volume | 54 |
creator | Askari, Mohammad S Esguerra, Kenneth Virgel N Lumb, Jean-Philip Ottenwaelder, Xavier |
description | Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)–semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling. This complex is the resting state of the Cu catalyst during turnover at room temperature. A mechanistic study of the formation of this complex at low temperatures demonstrates that the oxygenation pathway mimics the dinuclear Cu enzyme tyrosinase by involving a dinuclear side-on peroxodicopper(II) oxidant. Unlike the enzyme, however, the rate-limiting step of the ortho-oxygenation reaction is the self-assembly of the oxidant from Cu(I) and O2. We provide details for all steps in the cycle and demonstrate that turnover is contingent upon proton-transfer events that are mediated by a slight excess of ligand. Finally, our knowledge of the reaction mechanism can be leveraged to diversify the reaction outcome. Thus, uncoupled ortho-quinones are favored in polar, coordinating media, highlighting unusually high levels of chemoselectivity for a catalytic aerobic oxidation of a phenol. |
doi_str_mv | 10.1021/acs.inorgchem.5b01297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793297225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1710654210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-b3e579d3fe3b7a315933515db02fcf184385b51907f3b49783f224583b5b856e3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EgvL4BFCWbFJm7DiPZal4SSA2IMEqstMxDUriYDsS5etJ1cIWVjOLc2ekexg7RZgicLxQlZ_WnXVv1ZLaqdSAvMh22AQlh1givOyyCcC4Y5oWB-zQ-3cAKESS7rMDngrgIsEJe51Fl7Vt65ZCXUUPVC1VV_s2MtZFYUnR3PY9uXiugmpWX7SIZuSsHtHHz9UbdSrUtousiZI4kAvx5RBWTb-kzjbHbM-oxtPJdh6x5-urp_ltfP94czef3ccqkRBiLUhmxUIYEjpTAmUhhES50MBNZTBPRC61xAIyI3RSZLkwnCcyF1rqXKYkjtj55m7v7MdAPpRt7StqGtWRHXyJWSHGajiX_0ARUplwhBGVG7Ry1ntHpuxd3Sq3KhHKtYByFFD-Cii3Asbc2fbFoFta_KZ-Gh8B3ADr_LsdXDeW88fRb5VblMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710654210</pqid></control><display><type>article</type><title>A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol</title><source>MEDLINE</source><source>ACS Publications</source><creator>Askari, Mohammad S ; Esguerra, Kenneth Virgel N ; Lumb, Jean-Philip ; Ottenwaelder, Xavier</creator><creatorcontrib>Askari, Mohammad S ; Esguerra, Kenneth Virgel N ; Lumb, Jean-Philip ; Ottenwaelder, Xavier</creatorcontrib><description>Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)–semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling. This complex is the resting state of the Cu catalyst during turnover at room temperature. A mechanistic study of the formation of this complex at low temperatures demonstrates that the oxygenation pathway mimics the dinuclear Cu enzyme tyrosinase by involving a dinuclear side-on peroxodicopper(II) oxidant. Unlike the enzyme, however, the rate-limiting step of the ortho-oxygenation reaction is the self-assembly of the oxidant from Cu(I) and O2. We provide details for all steps in the cycle and demonstrate that turnover is contingent upon proton-transfer events that are mediated by a slight excess of ligand. Finally, our knowledge of the reaction mechanism can be leveraged to diversify the reaction outcome. Thus, uncoupled ortho-quinones are favored in polar, coordinating media, highlighting unusually high levels of chemoselectivity for a catalytic aerobic oxidation of a phenol.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.5b01297</identifier><identifier>PMID: 26302341</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetic Materials - chemistry ; Catalysis ; Catalysts ; Copper ; Copper - chemistry ; Enzymes ; Molecular Structure ; Monophenol Monooxygenase - metabolism ; Oxidants ; Oxidation ; Oxygen - chemistry ; Oxygenation ; Phenols ; Phenols - chemistry ; Self assembly</subject><ispartof>Inorganic chemistry, 2015-09, Vol.54 (17), p.8665-8672</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-b3e579d3fe3b7a315933515db02fcf184385b51907f3b49783f224583b5b856e3</citedby><cites>FETCH-LOGICAL-a450t-b3e579d3fe3b7a315933515db02fcf184385b51907f3b49783f224583b5b856e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.5b01297$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.5b01297$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26302341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Askari, Mohammad S</creatorcontrib><creatorcontrib>Esguerra, Kenneth Virgel N</creatorcontrib><creatorcontrib>Lumb, Jean-Philip</creatorcontrib><creatorcontrib>Ottenwaelder, Xavier</creatorcontrib><title>A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)–semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling. This complex is the resting state of the Cu catalyst during turnover at room temperature. A mechanistic study of the formation of this complex at low temperatures demonstrates that the oxygenation pathway mimics the dinuclear Cu enzyme tyrosinase by involving a dinuclear side-on peroxodicopper(II) oxidant. Unlike the enzyme, however, the rate-limiting step of the ortho-oxygenation reaction is the self-assembly of the oxidant from Cu(I) and O2. We provide details for all steps in the cycle and demonstrate that turnover is contingent upon proton-transfer events that are mediated by a slight excess of ligand. Finally, our knowledge of the reaction mechanism can be leveraged to diversify the reaction outcome. Thus, uncoupled ortho-quinones are favored in polar, coordinating media, highlighting unusually high levels of chemoselectivity for a catalytic aerobic oxidation of a phenol.</description><subject>Biomimetic Materials - chemistry</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Enzymes</subject><subject>Molecular Structure</subject><subject>Monophenol Monooxygenase - metabolism</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxygen - chemistry</subject><subject>Oxygenation</subject><subject>Phenols</subject><subject>Phenols - chemistry</subject><subject>Self assembly</subject><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOwzAQRS0EgvL4BFCWbFJm7DiPZal4SSA2IMEqstMxDUriYDsS5etJ1cIWVjOLc2ekexg7RZgicLxQlZ_WnXVv1ZLaqdSAvMh22AQlh1givOyyCcC4Y5oWB-zQ-3cAKESS7rMDngrgIsEJe51Fl7Vt65ZCXUUPVC1VV_s2MtZFYUnR3PY9uXiugmpWX7SIZuSsHtHHz9UbdSrUtousiZI4kAvx5RBWTb-kzjbHbM-oxtPJdh6x5-urp_ltfP94czef3ccqkRBiLUhmxUIYEjpTAmUhhES50MBNZTBPRC61xAIyI3RSZLkwnCcyF1rqXKYkjtj55m7v7MdAPpRt7StqGtWRHXyJWSHGajiX_0ARUplwhBGVG7Ry1ntHpuxd3Sq3KhHKtYByFFD-Cii3Asbc2fbFoFta_KZ-Gh8B3ADr_LsdXDeW88fRb5VblMk</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Askari, Mohammad S</creator><creator>Esguerra, Kenneth Virgel N</creator><creator>Lumb, Jean-Philip</creator><creator>Ottenwaelder, Xavier</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150908</creationdate><title>A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol</title><author>Askari, Mohammad S ; Esguerra, Kenneth Virgel N ; Lumb, Jean-Philip ; Ottenwaelder, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-b3e579d3fe3b7a315933515db02fcf184385b51907f3b49783f224583b5b856e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Enzymes</topic><topic>Molecular Structure</topic><topic>Monophenol Monooxygenase - metabolism</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxygen - chemistry</topic><topic>Oxygenation</topic><topic>Phenols</topic><topic>Phenols - chemistry</topic><topic>Self assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Askari, Mohammad S</creatorcontrib><creatorcontrib>Esguerra, Kenneth Virgel N</creatorcontrib><creatorcontrib>Lumb, Jean-Philip</creatorcontrib><creatorcontrib>Ottenwaelder, Xavier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askari, Mohammad S</au><au>Esguerra, Kenneth Virgel N</au><au>Lumb, Jean-Philip</au><au>Ottenwaelder, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2015-09-08</date><risdate>2015</risdate><volume>54</volume><issue>17</issue><spage>8665</spage><epage>8672</epage><pages>8665-8672</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)–semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling. This complex is the resting state of the Cu catalyst during turnover at room temperature. A mechanistic study of the formation of this complex at low temperatures demonstrates that the oxygenation pathway mimics the dinuclear Cu enzyme tyrosinase by involving a dinuclear side-on peroxodicopper(II) oxidant. Unlike the enzyme, however, the rate-limiting step of the ortho-oxygenation reaction is the self-assembly of the oxidant from Cu(I) and O2. We provide details for all steps in the cycle and demonstrate that turnover is contingent upon proton-transfer events that are mediated by a slight excess of ligand. Finally, our knowledge of the reaction mechanism can be leveraged to diversify the reaction outcome. Thus, uncoupled ortho-quinones are favored in polar, coordinating media, highlighting unusually high levels of chemoselectivity for a catalytic aerobic oxidation of a phenol.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26302341</pmid><doi>10.1021/acs.inorgchem.5b01297</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1669 |
ispartof | Inorganic chemistry, 2015-09, Vol.54 (17), p.8665-8672 |
issn | 0020-1669 1520-510X |
language | eng |
recordid | cdi_proquest_miscellaneous_1793297225 |
source | MEDLINE; ACS Publications |
subjects | Biomimetic Materials - chemistry Catalysis Catalysts Copper Copper - chemistry Enzymes Molecular Structure Monophenol Monooxygenase - metabolism Oxidants Oxidation Oxygen - chemistry Oxygenation Phenols Phenols - chemistry Self assembly |
title | A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biomimetic%20Mechanism%20for%20the%20Copper-Catalyzed%20Aerobic%20Oxygenation%20of%204-tert-Butylphenol&rft.jtitle=Inorganic%20chemistry&rft.au=Askari,%20Mohammad%20S&rft.date=2015-09-08&rft.volume=54&rft.issue=17&rft.spage=8665&rft.epage=8672&rft.pages=8665-8672&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.5b01297&rft_dat=%3Cproquest_cross%3E1710654210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710654210&rft_id=info:pmid/26302341&rfr_iscdi=true |