Applying the miniaturization technologies for biosensor design

Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-05, Vol.79, p.901-913
1. Verfasser: Derkus, Burak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 913
container_issue
container_start_page 901
container_title Biosensors & bioelectronics
container_volume 79
creator Derkus, Burak
description Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. •Micro/nano-patterning techniques provide opportunities for analysis of biological molecules.•Microfluidic technology helps to better simulate and quantificate the biologicals.•Microelectromechanical systems based sensors are promising candidates as implantable sensors.
doi_str_mv 10.1016/j.bios.2016.01.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793295396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566316300343</els_id><sourcerecordid>1765975523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9f9b3bfdf518beefbe7c572aba50145e2a4be4c6e46625c8f0144785b5f0edd33</originalsourceid><addsrcrecordid>eNqNkU9LxDAQxYMouq5-AQ_So5fWSdKkDYggi_9A8KLn0KST3SzdZk26gn56u6x6FE8zDL_3Bt4j5IxCQYHKy2VhfEgFG_cCaAGc75EJrSuel4yLfTIBJWQupORH5DilJQBUVMEhOWKyBmAgJ-T6Zr3uPnw_z4YFZivf-2bYRP_ZDD702YB20YcuzD2mzIWYbR9in8atxeTn_Qk5cE2X8PR7Tsnr3e3L7CF_er5_nN085bas6yFXThluXOsErQ2iM1hZUbHGNAJoKZA1pcHSSiylZMLWbryWVS2McIBty_mUXOx81zG8bTANeuWTxa5regybpGmlOFOCK_kPVApVCcH-4yoZcGCqHFG2Q20MKUV0eh39qokfmoLetqGXehuO3rahgeqxjVF0_u2_MStsfyU_8Y_A1Q7AMbt3j1En67G32PqIdtBt8H_5fwEEjZtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762030294</pqid></control><display><type>article</type><title>Applying the miniaturization technologies for biosensor design</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Derkus, Burak</creator><creatorcontrib>Derkus, Burak</creatorcontrib><description>Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. •Micro/nano-patterning techniques provide opportunities for analysis of biological molecules.•Microfluidic technology helps to better simulate and quantificate the biologicals.•Microelectromechanical systems based sensors are promising candidates as implantable sensors.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2016.01.033</identifier><identifier>PMID: 26800206</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Animals ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Design engineering ; Detection ; Electron beam lithography ; Equipment Design ; Humans ; Instrumentation ; MEMs ; Micro-Electrical-Mechanical Systems - instrumentation ; Micro-Electrical-Mechanical Systems - methods ; Microchip Analytical Procedures - methods ; Microfluidics ; Micropatterning ; Microtechnology ; Miniaturization ; Miniaturization - instrumentation ; Miniaturization - methods ; Nanopatterning ; Nanostructure ; Nanotechnology ; Photolithography</subject><ispartof>Biosensors &amp; bioelectronics, 2016-05, Vol.79, p.901-913</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9f9b3bfdf518beefbe7c572aba50145e2a4be4c6e46625c8f0144785b5f0edd33</citedby><cites>FETCH-LOGICAL-c488t-9f9b3bfdf518beefbe7c572aba50145e2a4be4c6e46625c8f0144785b5f0edd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2016.01.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26800206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derkus, Burak</creatorcontrib><title>Applying the miniaturization technologies for biosensor design</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. •Micro/nano-patterning techniques provide opportunities for analysis of biological molecules.•Microfluidic technology helps to better simulate and quantificate the biologicals.•Microelectromechanical systems based sensors are promising candidates as implantable sensors.</description><subject>Animals</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Design engineering</subject><subject>Detection</subject><subject>Electron beam lithography</subject><subject>Equipment Design</subject><subject>Humans</subject><subject>Instrumentation</subject><subject>MEMs</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Micro-Electrical-Mechanical Systems - methods</subject><subject>Microchip Analytical Procedures - methods</subject><subject>Microfluidics</subject><subject>Micropatterning</subject><subject>Microtechnology</subject><subject>Miniaturization</subject><subject>Miniaturization - instrumentation</subject><subject>Miniaturization - methods</subject><subject>Nanopatterning</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Photolithography</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9LxDAQxYMouq5-AQ_So5fWSdKkDYggi_9A8KLn0KST3SzdZk26gn56u6x6FE8zDL_3Bt4j5IxCQYHKy2VhfEgFG_cCaAGc75EJrSuel4yLfTIBJWQupORH5DilJQBUVMEhOWKyBmAgJ-T6Zr3uPnw_z4YFZivf-2bYRP_ZDD702YB20YcuzD2mzIWYbR9in8atxeTn_Qk5cE2X8PR7Tsnr3e3L7CF_er5_nN085bas6yFXThluXOsErQ2iM1hZUbHGNAJoKZA1pcHSSiylZMLWbryWVS2McIBty_mUXOx81zG8bTANeuWTxa5regybpGmlOFOCK_kPVApVCcH-4yoZcGCqHFG2Q20MKUV0eh39qokfmoLetqGXehuO3rahgeqxjVF0_u2_MStsfyU_8Y_A1Q7AMbt3j1En67G32PqIdtBt8H_5fwEEjZtY</recordid><startdate>20160515</startdate><enddate>20160515</enddate><creator>Derkus, Burak</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160515</creationdate><title>Applying the miniaturization technologies for biosensor design</title><author>Derkus, Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9f9b3bfdf518beefbe7c572aba50145e2a4be4c6e46625c8f0144785b5f0edd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Design engineering</topic><topic>Detection</topic><topic>Electron beam lithography</topic><topic>Equipment Design</topic><topic>Humans</topic><topic>Instrumentation</topic><topic>MEMs</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Micro-Electrical-Mechanical Systems - methods</topic><topic>Microchip Analytical Procedures - methods</topic><topic>Microfluidics</topic><topic>Micropatterning</topic><topic>Microtechnology</topic><topic>Miniaturization</topic><topic>Miniaturization - instrumentation</topic><topic>Miniaturization - methods</topic><topic>Nanopatterning</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Photolithography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derkus, Burak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derkus, Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying the miniaturization technologies for biosensor design</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2016-05-15</date><risdate>2016</risdate><volume>79</volume><spage>901</spage><epage>913</epage><pages>901-913</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Microengineering technologies give us some opportunities in developing high-tech sensing systems that operate with low volumes of samples, integrates one or more laboratory functions on a single substrate, and enables automation. These millimetric sized devices can be produced for only a few dollars, which makes them promising candidates for mass-production. Besides electron beam lithography, stencil lithography, nano-imprint lithography or dip pen lithography, basic photolithography is the technique which is extensively used for the design of microengineered sensing systems. This technique has some advantages such as easy-to-manufacture, do not require expensive instrumentation, and allow creation of lower micron-sized patterns. In this review, it has been focused on three different type of microengineered sensing devices which are developed using micro/nano-patterning techniques, microfluidic technology, and microelectromechanics system based technology. •Micro/nano-patterning techniques provide opportunities for analysis of biological molecules.•Microfluidic technology helps to better simulate and quantificate the biologicals.•Microelectromechanical systems based sensors are promising candidates as implantable sensors.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>26800206</pmid><doi>10.1016/j.bios.2016.01.033</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2016-05, Vol.79, p.901-913
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1793295396
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Animals
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Biotechnology
Design engineering
Detection
Electron beam lithography
Equipment Design
Humans
Instrumentation
MEMs
Micro-Electrical-Mechanical Systems - instrumentation
Micro-Electrical-Mechanical Systems - methods
Microchip Analytical Procedures - methods
Microfluidics
Micropatterning
Microtechnology
Miniaturization
Miniaturization - instrumentation
Miniaturization - methods
Nanopatterning
Nanostructure
Nanotechnology
Photolithography
title Applying the miniaturization technologies for biosensor design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20the%20miniaturization%20technologies%20for%20biosensor%20design&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Derkus,%20Burak&rft.date=2016-05-15&rft.volume=79&rft.spage=901&rft.epage=913&rft.pages=901-913&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2016.01.033&rft_dat=%3Cproquest_cross%3E1765975523%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762030294&rft_id=info:pmid/26800206&rft_els_id=S0956566316300343&rfr_iscdi=true