Stable cheapest nonconforming finite elements for the Stokes equations

We introduce two pairs of stable cheapest nonconforming finite element space pairs to approximate the Stokes equations. One pair has each component of its velocity field to be approximated by the P1 nonconforming quadrilateral element while the pressure field is approximated by the piecewise constan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2016-06, Vol.299, p.2-14
Hauptverfasser: Kim, Sihwan, Yim, Jaeryun, Sheen, Dongwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 2
container_title Journal of computational and applied mathematics
container_volume 299
creator Kim, Sihwan
Yim, Jaeryun
Sheen, Dongwoo
description We introduce two pairs of stable cheapest nonconforming finite element space pairs to approximate the Stokes equations. One pair has each component of its velocity field to be approximated by the P1 nonconforming quadrilateral element while the pressure field is approximated by the piecewise constant function with globally two-dimensional subspaces removed: one removed space is due to the integral mean-zero property and the other space consists of global checker-board patterns. The other pair consists of the velocity space as the P1 nonconforming quadrilateral element enriched by a globally one-dimensional macro bubble function space based on DSSY (Douglas–Santos–Sheen–Ye) nonconforming finite element space; the pressure field is approximated by the piecewise constant function with mean-zero space eliminated. We show that two element pairs satisfy the discrete inf–sup condition uniformly. And we investigate the relationship between them. Several numerical examples are shown to confirm the efficiency and reliability of the proposed methods.
doi_str_mv 10.1016/j.cam.2015.06.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793293114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037704271500343X</els_id><sourcerecordid>1793293114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2511e7e3de33d302178d0c306a586d2651533599572ccb625db171dd95361b1d3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGwZWRJ8cWwnYkIVBaRKDIXZSuwLdUns1naReHtSlZnppNP_nf77CLkFWgAFcb8tdDsWJQVeUFHQEs7IDGrZ5CBlfU5mlEmZ06qUl-Qqxi2lVDRQzchyndpuwExvsN1hTJnzTnvX-zBa95n11tmEGQ44oksxm_ZZ2mC2Tv4LY4b7Q5usd_GaXPTtEPHmb87Jx_LpffGSr96eXxePq1xXFUt5yQFQIjPImGFTS1kbqhkVLa-FKQUHzhhvGi5LrTtRctOBBGMazgR0YNic3J3u7oLfH6a-arRR4zC0Dv0hKpANKxsGUE1ROEV18DEG7NUu2LENPwqoOjpTWzU5U0dnigo1tZmYhxOD0w_fFoOK2qLTaGxAnZTx9h_6FwqBc2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793293114</pqid></control><display><type>article</type><title>Stable cheapest nonconforming finite elements for the Stokes equations</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, Sihwan ; Yim, Jaeryun ; Sheen, Dongwoo</creator><creatorcontrib>Kim, Sihwan ; Yim, Jaeryun ; Sheen, Dongwoo</creatorcontrib><description>We introduce two pairs of stable cheapest nonconforming finite element space pairs to approximate the Stokes equations. One pair has each component of its velocity field to be approximated by the P1 nonconforming quadrilateral element while the pressure field is approximated by the piecewise constant function with globally two-dimensional subspaces removed: one removed space is due to the integral mean-zero property and the other space consists of global checker-board patterns. The other pair consists of the velocity space as the P1 nonconforming quadrilateral element enriched by a globally one-dimensional macro bubble function space based on DSSY (Douglas–Santos–Sheen–Ye) nonconforming finite element space; the pressure field is approximated by the piecewise constant function with mean-zero space eliminated. We show that two element pairs satisfy the discrete inf–sup condition uniformly. And we investigate the relationship between them. Several numerical examples are shown to confirm the efficiency and reliability of the proposed methods.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2015.06.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Constants ; Finite element method ; Fluid flow ; Function space ; Inf–sup condition ; Mathematical analysis ; Mathematical models ; Nonconforming finite element ; Quadrilaterals ; Stokes problem</subject><ispartof>Journal of computational and applied mathematics, 2016-06, Vol.299, p.2-14</ispartof><rights>2015 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2511e7e3de33d302178d0c306a586d2651533599572ccb625db171dd95361b1d3</citedby><cites>FETCH-LOGICAL-c443t-2511e7e3de33d302178d0c306a586d2651533599572ccb625db171dd95361b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2015.06.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kim, Sihwan</creatorcontrib><creatorcontrib>Yim, Jaeryun</creatorcontrib><creatorcontrib>Sheen, Dongwoo</creatorcontrib><title>Stable cheapest nonconforming finite elements for the Stokes equations</title><title>Journal of computational and applied mathematics</title><description>We introduce two pairs of stable cheapest nonconforming finite element space pairs to approximate the Stokes equations. One pair has each component of its velocity field to be approximated by the P1 nonconforming quadrilateral element while the pressure field is approximated by the piecewise constant function with globally two-dimensional subspaces removed: one removed space is due to the integral mean-zero property and the other space consists of global checker-board patterns. The other pair consists of the velocity space as the P1 nonconforming quadrilateral element enriched by a globally one-dimensional macro bubble function space based on DSSY (Douglas–Santos–Sheen–Ye) nonconforming finite element space; the pressure field is approximated by the piecewise constant function with mean-zero space eliminated. We show that two element pairs satisfy the discrete inf–sup condition uniformly. And we investigate the relationship between them. Several numerical examples are shown to confirm the efficiency and reliability of the proposed methods.</description><subject>Approximation</subject><subject>Constants</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Function space</subject><subject>Inf–sup condition</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonconforming finite element</subject><subject>Quadrilaterals</subject><subject>Stokes problem</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGwZWRJ8cWwnYkIVBaRKDIXZSuwLdUns1naReHtSlZnppNP_nf77CLkFWgAFcb8tdDsWJQVeUFHQEs7IDGrZ5CBlfU5mlEmZ06qUl-Qqxi2lVDRQzchyndpuwExvsN1hTJnzTnvX-zBa95n11tmEGQ44oksxm_ZZ2mC2Tv4LY4b7Q5usd_GaXPTtEPHmb87Jx_LpffGSr96eXxePq1xXFUt5yQFQIjPImGFTS1kbqhkVLa-FKQUHzhhvGi5LrTtRctOBBGMazgR0YNic3J3u7oLfH6a-arRR4zC0Dv0hKpANKxsGUE1ROEV18DEG7NUu2LENPwqoOjpTWzU5U0dnigo1tZmYhxOD0w_fFoOK2qLTaGxAnZTx9h_6FwqBc2g</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Kim, Sihwan</creator><creator>Yim, Jaeryun</creator><creator>Sheen, Dongwoo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160601</creationdate><title>Stable cheapest nonconforming finite elements for the Stokes equations</title><author>Kim, Sihwan ; Yim, Jaeryun ; Sheen, Dongwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2511e7e3de33d302178d0c306a586d2651533599572ccb625db171dd95361b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Constants</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Function space</topic><topic>Inf–sup condition</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonconforming finite element</topic><topic>Quadrilaterals</topic><topic>Stokes problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sihwan</creatorcontrib><creatorcontrib>Yim, Jaeryun</creatorcontrib><creatorcontrib>Sheen, Dongwoo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sihwan</au><au>Yim, Jaeryun</au><au>Sheen, Dongwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable cheapest nonconforming finite elements for the Stokes equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>299</volume><spage>2</spage><epage>14</epage><pages>2-14</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We introduce two pairs of stable cheapest nonconforming finite element space pairs to approximate the Stokes equations. One pair has each component of its velocity field to be approximated by the P1 nonconforming quadrilateral element while the pressure field is approximated by the piecewise constant function with globally two-dimensional subspaces removed: one removed space is due to the integral mean-zero property and the other space consists of global checker-board patterns. The other pair consists of the velocity space as the P1 nonconforming quadrilateral element enriched by a globally one-dimensional macro bubble function space based on DSSY (Douglas–Santos–Sheen–Ye) nonconforming finite element space; the pressure field is approximated by the piecewise constant function with mean-zero space eliminated. We show that two element pairs satisfy the discrete inf–sup condition uniformly. And we investigate the relationship between them. Several numerical examples are shown to confirm the efficiency and reliability of the proposed methods.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2015.06.021</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2016-06, Vol.299, p.2-14
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1793293114
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Constants
Finite element method
Fluid flow
Function space
Inf–sup condition
Mathematical analysis
Mathematical models
Nonconforming finite element
Quadrilaterals
Stokes problem
title Stable cheapest nonconforming finite elements for the Stokes equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20cheapest%20nonconforming%20finite%20elements%20for%20the%20Stokes%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Kim,%20Sihwan&rft.date=2016-06-01&rft.volume=299&rft.spage=2&rft.epage=14&rft.pages=2-14&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2015.06.021&rft_dat=%3Cproquest_cross%3E1793293114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793293114&rft_id=info:pmid/&rft_els_id=S037704271500343X&rfr_iscdi=true