Imprinting of glass
A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal...
Gespeichert in:
Veröffentlicht in: | Optical materials express 2015-08, Vol.5 (8), p.1674-1681 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1681 |
---|---|
container_issue | 8 |
container_start_page | 1674 |
container_title | Optical materials express |
container_volume | 5 |
creator | Fleming, Lauren A. H. Goldie, David M. Abdolvand, Amin |
description | A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated. |
doi_str_mv | 10.1364/OME.5.001674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793292580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793292580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</originalsourceid><addsrcrecordid>eNpNjz1PwzAYhC0EElXpBD-gIwMJr19_xSOqClQq6gKz5dhvqqB8lDgd-PcEhYFb7obT6R7G7jjkXGj5eHjb5ioH4NrIC7ZArmwmrIDLf_marVL6hElKY4G4YLe79jTU3Vh3x3VfrY-NT-mGXVW-SbT68yX7eN6-b16z_eFlt3naZ0FIO2aFokAkdKFJRIBCG4M2eiAAaUpTlQggNEptLC9jaXhEzxXp6JWCiEEs2f28exr6rzOl0bV1CtQ0vqP-nBw3VqBFVcBUfZirYehTGqhy0-vWD9-Og_vFdxO-U27GFz8FMEnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793292580</pqid></control><display><type>article</type><title>Imprinting of glass</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fleming, Lauren A. H. ; Goldie, David M. ; Abdolvand, Amin</creator><creatorcontrib>Fleming, Lauren A. H. ; Goldie, David M. ; Abdolvand, Amin</creatorcontrib><description>A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.</description><identifier>ISSN: 2159-3930</identifier><identifier>EISSN: 2159-3930</identifier><identifier>DOI: 10.1364/OME.5.001674</identifier><language>eng</language><subject>Contact ; Depletion ; Direct current ; Dynamic structural analysis ; Electric fields ; Electrodes ; Glass ; High temperature</subject><ispartof>Optical materials express, 2015-08, Vol.5 (8), p.1674-1681</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</citedby><cites>FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Fleming, Lauren A. H.</creatorcontrib><creatorcontrib>Goldie, David M.</creatorcontrib><creatorcontrib>Abdolvand, Amin</creatorcontrib><title>Imprinting of glass</title><title>Optical materials express</title><description>A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.</description><subject>Contact</subject><subject>Depletion</subject><subject>Direct current</subject><subject>Dynamic structural analysis</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Glass</subject><subject>High temperature</subject><issn>2159-3930</issn><issn>2159-3930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNjz1PwzAYhC0EElXpBD-gIwMJr19_xSOqClQq6gKz5dhvqqB8lDgd-PcEhYFb7obT6R7G7jjkXGj5eHjb5ioH4NrIC7ZArmwmrIDLf_marVL6hElKY4G4YLe79jTU3Vh3x3VfrY-NT-mGXVW-SbT68yX7eN6-b16z_eFlt3naZ0FIO2aFokAkdKFJRIBCG4M2eiAAaUpTlQggNEptLC9jaXhEzxXp6JWCiEEs2f28exr6rzOl0bV1CtQ0vqP-nBw3VqBFVcBUfZirYehTGqhy0-vWD9-Og_vFdxO-U27GFz8FMEnk</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Fleming, Lauren A. H.</creator><creator>Goldie, David M.</creator><creator>Abdolvand, Amin</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>Imprinting of glass</title><author>Fleming, Lauren A. H. ; Goldie, David M. ; Abdolvand, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact</topic><topic>Depletion</topic><topic>Direct current</topic><topic>Dynamic structural analysis</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Glass</topic><topic>High temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Lauren A. H.</creatorcontrib><creatorcontrib>Goldie, David M.</creatorcontrib><creatorcontrib>Abdolvand, Amin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical materials express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Lauren A. H.</au><au>Goldie, David M.</au><au>Abdolvand, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imprinting of glass</atitle><jtitle>Optical materials express</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>5</volume><issue>8</issue><spage>1674</spage><epage>1681</epage><pages>1674-1681</pages><issn>2159-3930</issn><eissn>2159-3930</eissn><abstract>A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.</abstract><doi>10.1364/OME.5.001674</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-3930 |
ispartof | Optical materials express, 2015-08, Vol.5 (8), p.1674-1681 |
issn | 2159-3930 2159-3930 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793292580 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Contact Depletion Direct current Dynamic structural analysis Electric fields Electrodes Glass High temperature |
title | Imprinting of glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imprinting%20of%20glass&rft.jtitle=Optical%20materials%20express&rft.au=Fleming,%20Lauren%20A.%20H.&rft.date=2015-08-01&rft.volume=5&rft.issue=8&rft.spage=1674&rft.epage=1681&rft.pages=1674-1681&rft.issn=2159-3930&rft.eissn=2159-3930&rft_id=info:doi/10.1364/OME.5.001674&rft_dat=%3Cproquest_cross%3E1793292580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793292580&rft_id=info:pmid/&rfr_iscdi=true |