Imprinting of glass

A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials express 2015-08, Vol.5 (8), p.1674-1681
Hauptverfasser: Fleming, Lauren A. H., Goldie, David M., Abdolvand, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1681
container_issue 8
container_start_page 1674
container_title Optical materials express
container_volume 5
creator Fleming, Lauren A. H.
Goldie, David M.
Abdolvand, Amin
description A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.
doi_str_mv 10.1364/OME.5.001674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793292580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793292580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</originalsourceid><addsrcrecordid>eNpNjz1PwzAYhC0EElXpBD-gIwMJr19_xSOqClQq6gKz5dhvqqB8lDgd-PcEhYFb7obT6R7G7jjkXGj5eHjb5ioH4NrIC7ZArmwmrIDLf_marVL6hElKY4G4YLe79jTU3Vh3x3VfrY-NT-mGXVW-SbT68yX7eN6-b16z_eFlt3naZ0FIO2aFokAkdKFJRIBCG4M2eiAAaUpTlQggNEptLC9jaXhEzxXp6JWCiEEs2f28exr6rzOl0bV1CtQ0vqP-nBw3VqBFVcBUfZirYehTGqhy0-vWD9-Og_vFdxO-U27GFz8FMEnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793292580</pqid></control><display><type>article</type><title>Imprinting of glass</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fleming, Lauren A. H. ; Goldie, David M. ; Abdolvand, Amin</creator><creatorcontrib>Fleming, Lauren A. H. ; Goldie, David M. ; Abdolvand, Amin</creatorcontrib><description>A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.</description><identifier>ISSN: 2159-3930</identifier><identifier>EISSN: 2159-3930</identifier><identifier>DOI: 10.1364/OME.5.001674</identifier><language>eng</language><subject>Contact ; Depletion ; Direct current ; Dynamic structural analysis ; Electric fields ; Electrodes ; Glass ; High temperature</subject><ispartof>Optical materials express, 2015-08, Vol.5 (8), p.1674-1681</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</citedby><cites>FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Fleming, Lauren A. H.</creatorcontrib><creatorcontrib>Goldie, David M.</creatorcontrib><creatorcontrib>Abdolvand, Amin</creatorcontrib><title>Imprinting of glass</title><title>Optical materials express</title><description>A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.</description><subject>Contact</subject><subject>Depletion</subject><subject>Direct current</subject><subject>Dynamic structural analysis</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Glass</subject><subject>High temperature</subject><issn>2159-3930</issn><issn>2159-3930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNjz1PwzAYhC0EElXpBD-gIwMJr19_xSOqClQq6gKz5dhvqqB8lDgd-PcEhYFb7obT6R7G7jjkXGj5eHjb5ioH4NrIC7ZArmwmrIDLf_marVL6hElKY4G4YLe79jTU3Vh3x3VfrY-NT-mGXVW-SbT68yX7eN6-b16z_eFlt3naZ0FIO2aFokAkdKFJRIBCG4M2eiAAaUpTlQggNEptLC9jaXhEzxXp6JWCiEEs2f28exr6rzOl0bV1CtQ0vqP-nBw3VqBFVcBUfZirYehTGqhy0-vWD9-Og_vFdxO-U27GFz8FMEnk</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Fleming, Lauren A. H.</creator><creator>Goldie, David M.</creator><creator>Abdolvand, Amin</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150801</creationdate><title>Imprinting of glass</title><author>Fleming, Lauren A. H. ; Goldie, David M. ; Abdolvand, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-85ecee3686e3d00867729da0e0047b7fb20036246791bdb71d2a15e6da550d2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact</topic><topic>Depletion</topic><topic>Direct current</topic><topic>Dynamic structural analysis</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Glass</topic><topic>High temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Lauren A. H.</creatorcontrib><creatorcontrib>Goldie, David M.</creatorcontrib><creatorcontrib>Abdolvand, Amin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optical materials express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Lauren A. H.</au><au>Goldie, David M.</au><au>Abdolvand, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imprinting of glass</atitle><jtitle>Optical materials express</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>5</volume><issue>8</issue><spage>1674</spage><epage>1681</epage><pages>1674-1681</pages><issn>2159-3930</issn><eissn>2159-3930</eissn><abstract>A diffractive optical element is fabricated in soda-lime float glass using a simple and inexpensive process. The glass is sandwiched between a mesh anode (lattice constant 2 mu m) and a flat metal cathode. Applying a direct current while at a moderately elevated temperature of 553 K induces thermal poling of the glass. The result is that the structured pattern of the electrode is imprinted on the glass as the electric field causes ion depleted regions where there is contact between the glass and electrode. The current-time dynamics of the structuring process along with X-ray element analysis and conductivity measurements are presented. Optical analyses of the resultant diffraction patterns of samples suggest that large-scale and complex patterns can be fabricated.</abstract><doi>10.1364/OME.5.001674</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2159-3930
ispartof Optical materials express, 2015-08, Vol.5 (8), p.1674-1681
issn 2159-3930
2159-3930
language eng
recordid cdi_proquest_miscellaneous_1793292580
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Contact
Depletion
Direct current
Dynamic structural analysis
Electric fields
Electrodes
Glass
High temperature
title Imprinting of glass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imprinting%20of%20glass&rft.jtitle=Optical%20materials%20express&rft.au=Fleming,%20Lauren%20A.%20H.&rft.date=2015-08-01&rft.volume=5&rft.issue=8&rft.spage=1674&rft.epage=1681&rft.pages=1674-1681&rft.issn=2159-3930&rft.eissn=2159-3930&rft_id=info:doi/10.1364/OME.5.001674&rft_dat=%3Cproquest_cross%3E1793292580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793292580&rft_id=info:pmid/&rfr_iscdi=true