Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro
[Display omitted] The aim of this study was to determine the in vitro microbiological performances of a lactose-modified chitosan (Chitlac) coating inside which silver nanoparticles were embedded (Chitlac-nAg) for BisGMA/TEGDMA methacrylic specimens. Different concentrations of nAg inside Chitlac co...
Gespeichert in:
Veröffentlicht in: | Journal of dentistry 2015-12, Vol.43 (12), p.1483-1490 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1490 |
---|---|
container_issue | 12 |
container_start_page | 1483 |
container_title | Journal of dentistry |
container_volume | 43 |
creator | Ionescu, A.C Brambilla, E Travan, A Marsich, E Donati, I Gobbi, P Turco, G Di Lenarda, R Cadenaro, M Paoletti, S Breschi, L |
description | [Display omitted]
The aim of this study was to determine the in vitro microbiological performances of a lactose-modified chitosan (Chitlac) coating inside which silver nanoparticles were embedded (Chitlac-nAg) for BisGMA/TEGDMA methacrylic specimens.
Different concentrations of nAg inside Chitlac coating were tested (1mM, 2mM, 5mM). Specimen surface was analyzed by means of field-emission scanning electron microscopy (FEISEM) and energy-dispersive X-ray spectroscopy (EDS). A 48h monospecific Streptococcus mutans biofilm was developed over the specimen surfaces using a modified drip-flow bioreactor; adherent viable biomass was assessed by MTT test and biofilm was imaged by confocal laser-scanning microscopy (CLSM).
The presence of finely dispersed nanoparticles inside the Chitlac coating was confirmed by FEISEM and EDS analysis. All nanoparticles were embedded in the Chitlac coating layer. Chitlac-nAg coatings were able to significantly decrease biofilm formation depending on the nAg concentration, reaching a −80% viable biomass decrease when the 5mM nAg-Chitlac group was confronted to non-coated control specimens. CLSM analysis did not provide evidence of a contact-killing activity, however the antibacterial Chitlac-nAg coating was able to alter biofilm morphology preventing the development of mature biofilm structures.
The microbiological model applied in this study helped in assessing the antibacterial properties of a coating designed for methacrylate surfaces.
A microbiological model based on a bioreactor-grown biofilm is useful for preliminary in vitro tests of dental materials. In translational terms, an antibacterial nanocomposite coating based on Chitlac-nAg and designed to be applied to methacrylic surfaces may be a promising way to obtain dental materials able to actively prevent secondary caries. |
doi_str_mv | 10.1016/j.jdent.2015.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793288702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030057121530052X</els_id><sourcerecordid>1785230136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-f3da0aaa5192edfa712d23589b21cc3ba3b7daba495bd2913bd50d31572a90f3</originalsourceid><addsrcrecordid>eNqNks-KFDEQxhtR3HH1CQRp8OJlxvzpdCYHBVnWP7DgYfawt1CdVLsZu5MxSQ_MzQfwtm_ok5h2VoW9uKcKxe_7QlV9VfWckhUltH29XW0t-rxihIrSWRHSPqgWdC3Vksr26mG1IJyQpZCUnVRPUtoSQhrC1OPqhLWNlLyRi-rHxg17jD-_3-zCcEhgzDVEZ7EGn93oTAydg6H24IMJ4y4kl7E2AbLzX-o-xHrEfA0mHgZn6jTFHgymOqKd5rrJEXe5KI2ZUj1OGXyqOxd6N4yzeiw-wdfO13uXY3haPephSPjstp5Wl-_PL88-Li8-f_h09u5iaYRs8rLnFggACKoY2h7KgJZxsVYdo8bwDngnLXTQKNFZpijvrCCWUyEZKNLz0-rV0XYXw7cJU9ajSwaHATyGKWkqFWfrtSTsHuhaME4ob--BNkqpYksL-vIOug1T9GXkmWqFamWrCsWPVDlCShF7vYtuhHjQlOg5AXqrfydAzwmYmyUBRfXi1nvqRrR_NX9OXoA3RwDLhvcOo07GoTdoXUSTtQ3uPx-8vaM3g_POwPAVD5j-TaIT00Rv5hDOGaRifrAr_gs03dxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746596769</pqid></control><display><type>article</type><title>Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ionescu, A.C ; Brambilla, E ; Travan, A ; Marsich, E ; Donati, I ; Gobbi, P ; Turco, G ; Di Lenarda, R ; Cadenaro, M ; Paoletti, S ; Breschi, L</creator><creatorcontrib>Ionescu, A.C ; Brambilla, E ; Travan, A ; Marsich, E ; Donati, I ; Gobbi, P ; Turco, G ; Di Lenarda, R ; Cadenaro, M ; Paoletti, S ; Breschi, L</creatorcontrib><description>[Display omitted]
The aim of this study was to determine the in vitro microbiological performances of a lactose-modified chitosan (Chitlac) coating inside which silver nanoparticles were embedded (Chitlac-nAg) for BisGMA/TEGDMA methacrylic specimens.
Different concentrations of nAg inside Chitlac coating were tested (1mM, 2mM, 5mM). Specimen surface was analyzed by means of field-emission scanning electron microscopy (FEISEM) and energy-dispersive X-ray spectroscopy (EDS). A 48h monospecific Streptococcus mutans biofilm was developed over the specimen surfaces using a modified drip-flow bioreactor; adherent viable biomass was assessed by MTT test and biofilm was imaged by confocal laser-scanning microscopy (CLSM).
The presence of finely dispersed nanoparticles inside the Chitlac coating was confirmed by FEISEM and EDS analysis. All nanoparticles were embedded in the Chitlac coating layer. Chitlac-nAg coatings were able to significantly decrease biofilm formation depending on the nAg concentration, reaching a −80% viable biomass decrease when the 5mM nAg-Chitlac group was confronted to non-coated control specimens. CLSM analysis did not provide evidence of a contact-killing activity, however the antibacterial Chitlac-nAg coating was able to alter biofilm morphology preventing the development of mature biofilm structures.
The microbiological model applied in this study helped in assessing the antibacterial properties of a coating designed for methacrylate surfaces.
A microbiological model based on a bioreactor-grown biofilm is useful for preliminary in vitro tests of dental materials. In translational terms, an antibacterial nanocomposite coating based on Chitlac-nAg and designed to be applied to methacrylic surfaces may be a promising way to obtain dental materials able to actively prevent secondary caries.</description><identifier>ISSN: 0300-5712</identifier><identifier>EISSN: 1879-176X</identifier><identifier>DOI: 10.1016/j.jdent.2015.10.006</identifier><identifier>PMID: 26477347</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject><![CDATA[Acids ; Anti-Bacterial Agents - administration & dosage ; Anti-Bacterial Agents - chemistry ; Antiinfectives and antibacterials ; Antimicrobial agents ; Bacteriology ; Biofilm ; Biofilms ; Biofilms - drug effects ; Biomass ; Biomedical materials ; Bioreactors ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Coating ; Dental Caries - prevention & control ; Dental Materials ; Dentistry ; Humans ; In vitro testing ; Lactose ; Metal Nanoparticles - chemistry ; Methacrylates - administration & dosage ; Methacrylates - chemistry ; Microbial Sensitivity Tests ; Microbial Viability ; Microorganisms ; Nanocomposite ; Nanocomposites - administration & dosage ; Nanocomposites - chemistry ; Nanoparticles ; Polysaccharides - administration & dosage ; Polysaccharides - chemistry ; Silver - administration & dosage ; Silver - chemistry ; Silver nanoparticles ; Streptococcus mutans ; Streptococcus mutans - drug effects ; Streptococcus mutans - physiology ; Studies ; Surface chemistry ; Surface Properties]]></subject><ispartof>Journal of dentistry, 2015-12, Vol.43 (12), p.1483-1490</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-f3da0aaa5192edfa712d23589b21cc3ba3b7daba495bd2913bd50d31572a90f3</citedby><cites>FETCH-LOGICAL-c574t-f3da0aaa5192edfa712d23589b21cc3ba3b7daba495bd2913bd50d31572a90f3</cites><orcidid>0000-0001-7621-226X ; 0000-0003-4705-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030057121530052X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26477347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ionescu, A.C</creatorcontrib><creatorcontrib>Brambilla, E</creatorcontrib><creatorcontrib>Travan, A</creatorcontrib><creatorcontrib>Marsich, E</creatorcontrib><creatorcontrib>Donati, I</creatorcontrib><creatorcontrib>Gobbi, P</creatorcontrib><creatorcontrib>Turco, G</creatorcontrib><creatorcontrib>Di Lenarda, R</creatorcontrib><creatorcontrib>Cadenaro, M</creatorcontrib><creatorcontrib>Paoletti, S</creatorcontrib><creatorcontrib>Breschi, L</creatorcontrib><title>Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro</title><title>Journal of dentistry</title><addtitle>J Dent</addtitle><description>[Display omitted]
The aim of this study was to determine the in vitro microbiological performances of a lactose-modified chitosan (Chitlac) coating inside which silver nanoparticles were embedded (Chitlac-nAg) for BisGMA/TEGDMA methacrylic specimens.
Different concentrations of nAg inside Chitlac coating were tested (1mM, 2mM, 5mM). Specimen surface was analyzed by means of field-emission scanning electron microscopy (FEISEM) and energy-dispersive X-ray spectroscopy (EDS). A 48h monospecific Streptococcus mutans biofilm was developed over the specimen surfaces using a modified drip-flow bioreactor; adherent viable biomass was assessed by MTT test and biofilm was imaged by confocal laser-scanning microscopy (CLSM).
The presence of finely dispersed nanoparticles inside the Chitlac coating was confirmed by FEISEM and EDS analysis. All nanoparticles were embedded in the Chitlac coating layer. Chitlac-nAg coatings were able to significantly decrease biofilm formation depending on the nAg concentration, reaching a −80% viable biomass decrease when the 5mM nAg-Chitlac group was confronted to non-coated control specimens. CLSM analysis did not provide evidence of a contact-killing activity, however the antibacterial Chitlac-nAg coating was able to alter biofilm morphology preventing the development of mature biofilm structures.
The microbiological model applied in this study helped in assessing the antibacterial properties of a coating designed for methacrylate surfaces.
A microbiological model based on a bioreactor-grown biofilm is useful for preliminary in vitro tests of dental materials. In translational terms, an antibacterial nanocomposite coating based on Chitlac-nAg and designed to be applied to methacrylic surfaces may be a promising way to obtain dental materials able to actively prevent secondary caries.</description><subject>Acids</subject><subject>Anti-Bacterial Agents - administration & dosage</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Bacteriology</subject><subject>Biofilm</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biomass</subject><subject>Biomedical materials</subject><subject>Bioreactors</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>Dental Caries - prevention & control</subject><subject>Dental Materials</subject><subject>Dentistry</subject><subject>Humans</subject><subject>In vitro testing</subject><subject>Lactose</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Methacrylates - administration & dosage</subject><subject>Methacrylates - chemistry</subject><subject>Microbial Sensitivity Tests</subject><subject>Microbial Viability</subject><subject>Microorganisms</subject><subject>Nanocomposite</subject><subject>Nanocomposites - administration & dosage</subject><subject>Nanocomposites - chemistry</subject><subject>Nanoparticles</subject><subject>Polysaccharides - administration & dosage</subject><subject>Polysaccharides - chemistry</subject><subject>Silver - administration & dosage</subject><subject>Silver - chemistry</subject><subject>Silver nanoparticles</subject><subject>Streptococcus mutans</subject><subject>Streptococcus mutans - drug effects</subject><subject>Streptococcus mutans - physiology</subject><subject>Studies</subject><subject>Surface chemistry</subject><subject>Surface Properties</subject><issn>0300-5712</issn><issn>1879-176X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-KFDEQxhtR3HH1CQRp8OJlxvzpdCYHBVnWP7DgYfawt1CdVLsZu5MxSQ_MzQfwtm_ok5h2VoW9uKcKxe_7QlV9VfWckhUltH29XW0t-rxihIrSWRHSPqgWdC3Vksr26mG1IJyQpZCUnVRPUtoSQhrC1OPqhLWNlLyRi-rHxg17jD-_3-zCcEhgzDVEZ7EGn93oTAydg6H24IMJ4y4kl7E2AbLzX-o-xHrEfA0mHgZn6jTFHgymOqKd5rrJEXe5KI2ZUj1OGXyqOxd6N4yzeiw-wdfO13uXY3haPephSPjstp5Wl-_PL88-Li8-f_h09u5iaYRs8rLnFggACKoY2h7KgJZxsVYdo8bwDngnLXTQKNFZpijvrCCWUyEZKNLz0-rV0XYXw7cJU9ajSwaHATyGKWkqFWfrtSTsHuhaME4ob--BNkqpYksL-vIOug1T9GXkmWqFamWrCsWPVDlCShF7vYtuhHjQlOg5AXqrfydAzwmYmyUBRfXi1nvqRrR_NX9OXoA3RwDLhvcOo07GoTdoXUSTtQ3uPx-8vaM3g_POwPAVD5j-TaIT00Rv5hDOGaRifrAr_gs03dxC</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Ionescu, A.C</creator><creator>Brambilla, E</creator><creator>Travan, A</creator><creator>Marsich, E</creator><creator>Donati, I</creator><creator>Gobbi, P</creator><creator>Turco, G</creator><creator>Di Lenarda, R</creator><creator>Cadenaro, M</creator><creator>Paoletti, S</creator><creator>Breschi, L</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>C1K</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-7621-226X</orcidid><orcidid>https://orcid.org/0000-0003-4705-0833</orcidid></search><sort><creationdate>20151201</creationdate><title>Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro</title><author>Ionescu, A.C ; Brambilla, E ; Travan, A ; Marsich, E ; Donati, I ; Gobbi, P ; Turco, G ; Di Lenarda, R ; Cadenaro, M ; Paoletti, S ; Breschi, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-f3da0aaa5192edfa712d23589b21cc3ba3b7daba495bd2913bd50d31572a90f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids</topic><topic>Anti-Bacterial Agents - administration & dosage</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Bacteriology</topic><topic>Biofilm</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biomass</topic><topic>Biomedical materials</topic><topic>Bioreactors</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>Dental Caries - prevention & control</topic><topic>Dental Materials</topic><topic>Dentistry</topic><topic>Humans</topic><topic>In vitro testing</topic><topic>Lactose</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Methacrylates - administration & dosage</topic><topic>Methacrylates - chemistry</topic><topic>Microbial Sensitivity Tests</topic><topic>Microbial Viability</topic><topic>Microorganisms</topic><topic>Nanocomposite</topic><topic>Nanocomposites - administration & dosage</topic><topic>Nanocomposites - chemistry</topic><topic>Nanoparticles</topic><topic>Polysaccharides - administration & dosage</topic><topic>Polysaccharides - chemistry</topic><topic>Silver - administration & dosage</topic><topic>Silver - chemistry</topic><topic>Silver nanoparticles</topic><topic>Streptococcus mutans</topic><topic>Streptococcus mutans - drug effects</topic><topic>Streptococcus mutans - physiology</topic><topic>Studies</topic><topic>Surface chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionescu, A.C</creatorcontrib><creatorcontrib>Brambilla, E</creatorcontrib><creatorcontrib>Travan, A</creatorcontrib><creatorcontrib>Marsich, E</creatorcontrib><creatorcontrib>Donati, I</creatorcontrib><creatorcontrib>Gobbi, P</creatorcontrib><creatorcontrib>Turco, G</creatorcontrib><creatorcontrib>Di Lenarda, R</creatorcontrib><creatorcontrib>Cadenaro, M</creatorcontrib><creatorcontrib>Paoletti, S</creatorcontrib><creatorcontrib>Breschi, L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionescu, A.C</au><au>Brambilla, E</au><au>Travan, A</au><au>Marsich, E</au><au>Donati, I</au><au>Gobbi, P</au><au>Turco, G</au><au>Di Lenarda, R</au><au>Cadenaro, M</au><au>Paoletti, S</au><au>Breschi, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro</atitle><jtitle>Journal of dentistry</jtitle><addtitle>J Dent</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>43</volume><issue>12</issue><spage>1483</spage><epage>1490</epage><pages>1483-1490</pages><issn>0300-5712</issn><eissn>1879-176X</eissn><abstract>[Display omitted]
The aim of this study was to determine the in vitro microbiological performances of a lactose-modified chitosan (Chitlac) coating inside which silver nanoparticles were embedded (Chitlac-nAg) for BisGMA/TEGDMA methacrylic specimens.
Different concentrations of nAg inside Chitlac coating were tested (1mM, 2mM, 5mM). Specimen surface was analyzed by means of field-emission scanning electron microscopy (FEISEM) and energy-dispersive X-ray spectroscopy (EDS). A 48h monospecific Streptococcus mutans biofilm was developed over the specimen surfaces using a modified drip-flow bioreactor; adherent viable biomass was assessed by MTT test and biofilm was imaged by confocal laser-scanning microscopy (CLSM).
The presence of finely dispersed nanoparticles inside the Chitlac coating was confirmed by FEISEM and EDS analysis. All nanoparticles were embedded in the Chitlac coating layer. Chitlac-nAg coatings were able to significantly decrease biofilm formation depending on the nAg concentration, reaching a −80% viable biomass decrease when the 5mM nAg-Chitlac group was confronted to non-coated control specimens. CLSM analysis did not provide evidence of a contact-killing activity, however the antibacterial Chitlac-nAg coating was able to alter biofilm morphology preventing the development of mature biofilm structures.
The microbiological model applied in this study helped in assessing the antibacterial properties of a coating designed for methacrylate surfaces.
A microbiological model based on a bioreactor-grown biofilm is useful for preliminary in vitro tests of dental materials. In translational terms, an antibacterial nanocomposite coating based on Chitlac-nAg and designed to be applied to methacrylic surfaces may be a promising way to obtain dental materials able to actively prevent secondary caries.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26477347</pmid><doi>10.1016/j.jdent.2015.10.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7621-226X</orcidid><orcidid>https://orcid.org/0000-0003-4705-0833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-5712 |
ispartof | Journal of dentistry, 2015-12, Vol.43 (12), p.1483-1490 |
issn | 0300-5712 1879-176X |
language | eng |
recordid | cdi_proquest_miscellaneous_1793288702 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acids Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - chemistry Antiinfectives and antibacterials Antimicrobial agents Bacteriology Biofilm Biofilms Biofilms - drug effects Biomass Biomedical materials Bioreactors Cells, Cultured Coated Materials, Biocompatible - chemistry Coating Dental Caries - prevention & control Dental Materials Dentistry Humans In vitro testing Lactose Metal Nanoparticles - chemistry Methacrylates - administration & dosage Methacrylates - chemistry Microbial Sensitivity Tests Microbial Viability Microorganisms Nanocomposite Nanocomposites - administration & dosage Nanocomposites - chemistry Nanoparticles Polysaccharides - administration & dosage Polysaccharides - chemistry Silver - administration & dosage Silver - chemistry Silver nanoparticles Streptococcus mutans Streptococcus mutans - drug effects Streptococcus mutans - physiology Studies Surface chemistry Surface Properties |
title | Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%E2%80%93polysaccharide%20antimicrobial%20nanocomposite%20coating%20for%20methacrylic%20surfaces%20reduces%20Streptococcus%20mutans%20biofilm%20formation%20in%20vitro&rft.jtitle=Journal%20of%20dentistry&rft.au=Ionescu,%20A.C&rft.date=2015-12-01&rft.volume=43&rft.issue=12&rft.spage=1483&rft.epage=1490&rft.pages=1483-1490&rft.issn=0300-5712&rft.eissn=1879-176X&rft_id=info:doi/10.1016/j.jdent.2015.10.006&rft_dat=%3Cproquest_cross%3E1785230136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1746596769&rft_id=info:pmid/26477347&rft_els_id=S030057121530052X&rfr_iscdi=true |