Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams

Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2015-10, Vol.361, p.311-316
Hauptverfasser: Eliades, J.A., Kim, J.K., Song, J.H., Yu, B.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue
container_start_page 311
container_title Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms
container_volume 361
creator Eliades, J.A.
Kim, J.K.
Song, J.H.
Yu, B.Y.
description Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to 70eV.
doi_str_mv 10.1016/j.nimb.2015.08.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793286784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168583X15007673</els_id><sourcerecordid>1793286784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-7ec807d3c7630607695495bfbc90c807988e68cd6fd68001dc109f9fb1fc89763</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1D3ji6KUV2tJC4sVs_Eo28aKJN0JhSFjbsgutyf57qd2zXCDD-0xmHoRuKckpofX9Lh9c3-YFoSwnPCdlcYZWlDdFJhivztEqhXjGePl1ia5i3JF0WMlW6Hvj-_00QsDR9VOnRueHiK0PWGEDGjoIfzWsBoODMs5jG-AwwaCP-DApE6a97wC7IY5h6mEYF1if0PSe6RZUH6_RhVVdhJvTvUafz08fm9ds-_7ytnncZrpk1Zg1oDlpTKmbuiQ1aWrBKsFa22pB5h_BOdRcm9qamhNCjaZEWGFbajUXCVqju6XvPvg0aRxl72Kap1MD-ClK2oiy4HXDqxQtlqgOPsYAVu6D61U4SkrkbFbu5GxWzmYl4TKZTdDDAkFa4sdBkFG7JASMC6BHabz7D_8FJlqEJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793286784</pqid></control><display><type>article</type><title>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Eliades, J.A. ; Kim, J.K. ; Song, J.H. ; Yu, B.Y.</creator><creatorcontrib>Eliades, J.A. ; Kim, J.K. ; Song, J.H. ; Yu, B.Y.</creatorcontrib><description>Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to &lt;100eV for ion–gas interactions, placing special demands on the deceleration optics and RFQ design. A system with large analyte transmission in the presence of gas has so far proven challenging. Presented are computer simulations using SIMION 8.1 for an ion deceleration and RFQ ion guide instrument design. Code included user-defined gas pressure gradients and threshold energies for ion–gas collisional losses. Results suggest a 3mm diameter, 35keV 36Cl− ion beam with 8eV full-width half maximum Gaussian energy spread and 35mrad angular divergence can be efficiently decelerated and then cooled in He gas, with a maximum pressure of 7mTorr, to 2eV within 450mm in the RFQs. Vacuum transmissions were 100%. Ion energy distributions at initial RFQ capture are shown to be much larger than the average value expected from the deceleration potential and this appears to be a general result arising from kinetic energy gain in the RFQ field. In these simulations, a potential for deceleration to 25eV resulted in a 30eV average energy distribution with a small fraction of ions &gt;70eV.</description><identifier>ISSN: 0168-583X</identifier><identifier>EISSN: 1872-9584</identifier><identifier>DOI: 10.1016/j.nimb.2015.08.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerator mass spectrometry (AMS) ; Accelerators ; Computer simulation ; Deceleration ; Design analysis ; Ion beams ; Ion cooling ; Kinetic energy ; Negative ion ; Quadrupoles ; Radio-frequency quadrupole (RFQ) ; Spreads</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms, 2015-10, Vol.361, p.311-316</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-7ec807d3c7630607695495bfbc90c807988e68cd6fd68001dc109f9fb1fc89763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nimb.2015.08.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Eliades, J.A.</creatorcontrib><creatorcontrib>Kim, J.K.</creatorcontrib><creatorcontrib>Song, J.H.</creatorcontrib><creatorcontrib>Yu, B.Y.</creatorcontrib><title>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</title><title>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms</title><description>Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to &lt;100eV for ion–gas interactions, placing special demands on the deceleration optics and RFQ design. A system with large analyte transmission in the presence of gas has so far proven challenging. Presented are computer simulations using SIMION 8.1 for an ion deceleration and RFQ ion guide instrument design. Code included user-defined gas pressure gradients and threshold energies for ion–gas collisional losses. Results suggest a 3mm diameter, 35keV 36Cl− ion beam with 8eV full-width half maximum Gaussian energy spread and 35mrad angular divergence can be efficiently decelerated and then cooled in He gas, with a maximum pressure of 7mTorr, to 2eV within 450mm in the RFQs. Vacuum transmissions were 100%. Ion energy distributions at initial RFQ capture are shown to be much larger than the average value expected from the deceleration potential and this appears to be a general result arising from kinetic energy gain in the RFQ field. In these simulations, a potential for deceleration to 25eV resulted in a 30eV average energy distribution with a small fraction of ions &gt;70eV.</description><subject>Accelerator mass spectrometry (AMS)</subject><subject>Accelerators</subject><subject>Computer simulation</subject><subject>Deceleration</subject><subject>Design analysis</subject><subject>Ion beams</subject><subject>Ion cooling</subject><subject>Kinetic energy</subject><subject>Negative ion</subject><subject>Quadrupoles</subject><subject>Radio-frequency quadrupole (RFQ)</subject><subject>Spreads</subject><issn>0168-583X</issn><issn>1872-9584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1D3ji6KUV2tJC4sVs_Eo28aKJN0JhSFjbsgutyf57qd2zXCDD-0xmHoRuKckpofX9Lh9c3-YFoSwnPCdlcYZWlDdFJhivztEqhXjGePl1ia5i3JF0WMlW6Hvj-_00QsDR9VOnRueHiK0PWGEDGjoIfzWsBoODMs5jG-AwwaCP-DApE6a97wC7IY5h6mEYF1if0PSe6RZUH6_RhVVdhJvTvUafz08fm9ds-_7ytnncZrpk1Zg1oDlpTKmbuiQ1aWrBKsFa22pB5h_BOdRcm9qamhNCjaZEWGFbajUXCVqju6XvPvg0aRxl72Kap1MD-ClK2oiy4HXDqxQtlqgOPsYAVu6D61U4SkrkbFbu5GxWzmYl4TKZTdDDAkFa4sdBkFG7JASMC6BHabz7D_8FJlqEJA</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Eliades, J.A.</creator><creator>Kim, J.K.</creator><creator>Song, J.H.</creator><creator>Yu, B.Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151015</creationdate><title>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</title><author>Eliades, J.A. ; Kim, J.K. ; Song, J.H. ; Yu, B.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-7ec807d3c7630607695495bfbc90c807988e68cd6fd68001dc109f9fb1fc89763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accelerator mass spectrometry (AMS)</topic><topic>Accelerators</topic><topic>Computer simulation</topic><topic>Deceleration</topic><topic>Design analysis</topic><topic>Ion beams</topic><topic>Ion cooling</topic><topic>Kinetic energy</topic><topic>Negative ion</topic><topic>Quadrupoles</topic><topic>Radio-frequency quadrupole (RFQ)</topic><topic>Spreads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliades, J.A.</creatorcontrib><creatorcontrib>Kim, J.K.</creatorcontrib><creatorcontrib>Song, J.H.</creatorcontrib><creatorcontrib>Yu, B.Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliades, J.A.</au><au>Kim, J.K.</au><au>Song, J.H.</au><au>Yu, B.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section B, Beam interactions with materials and atoms</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>361</volume><spage>311</spage><epage>316</epage><pages>311-316</pages><issn>0168-583X</issn><eissn>1872-9584</eissn><abstract>Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to &lt;100eV for ion–gas interactions, placing special demands on the deceleration optics and RFQ design. A system with large analyte transmission in the presence of gas has so far proven challenging. Presented are computer simulations using SIMION 8.1 for an ion deceleration and RFQ ion guide instrument design. Code included user-defined gas pressure gradients and threshold energies for ion–gas collisional losses. Results suggest a 3mm diameter, 35keV 36Cl− ion beam with 8eV full-width half maximum Gaussian energy spread and 35mrad angular divergence can be efficiently decelerated and then cooled in He gas, with a maximum pressure of 7mTorr, to 2eV within 450mm in the RFQs. Vacuum transmissions were 100%. Ion energy distributions at initial RFQ capture are shown to be much larger than the average value expected from the deceleration potential and this appears to be a general result arising from kinetic energy gain in the RFQ field. In these simulations, a potential for deceleration to 25eV resulted in a 30eV average energy distribution with a small fraction of ions &gt;70eV.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nimb.2015.08.032</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-583X
ispartof Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, 2015-10, Vol.361, p.311-316
issn 0168-583X
1872-9584
language eng
recordid cdi_proquest_miscellaneous_1793286784
source Elsevier ScienceDirect Journals Complete
subjects Accelerator mass spectrometry (AMS)
Accelerators
Computer simulation
Deceleration
Design analysis
Ion beams
Ion cooling
Kinetic energy
Negative ion
Quadrupoles
Radio-frequency quadrupole (RFQ)
Spreads
title Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulations%20for%20a%20deceleration%20and%20radio%20frequency%20quadrupole%20instrument%20for%20accelerator%20ion%20beams&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20B,%20Beam%20interactions%20with%20materials%20and%20atoms&rft.au=Eliades,%20J.A.&rft.date=2015-10-15&rft.volume=361&rft.spage=311&rft.epage=316&rft.pages=311-316&rft.issn=0168-583X&rft.eissn=1872-9584&rft_id=info:doi/10.1016/j.nimb.2015.08.032&rft_dat=%3Cproquest_cross%3E1793286784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793286784&rft_id=info:pmid/&rft_els_id=S0168583X15007673&rfr_iscdi=true