Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams
Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2015-10, Vol.361, p.311-316 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | |
container_start_page | 311 |
container_title | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms |
container_volume | 361 |
creator | Eliades, J.A. Kim, J.K. Song, J.H. Yu, B.Y. |
description | Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to 70eV. |
doi_str_mv | 10.1016/j.nimb.2015.08.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793286784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168583X15007673</els_id><sourcerecordid>1793286784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-7ec807d3c7630607695495bfbc90c807988e68cd6fd68001dc109f9fb1fc89763</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1D3ji6KUV2tJC4sVs_Eo28aKJN0JhSFjbsgutyf57qd2zXCDD-0xmHoRuKckpofX9Lh9c3-YFoSwnPCdlcYZWlDdFJhivztEqhXjGePl1ia5i3JF0WMlW6Hvj-_00QsDR9VOnRueHiK0PWGEDGjoIfzWsBoODMs5jG-AwwaCP-DApE6a97wC7IY5h6mEYF1if0PSe6RZUH6_RhVVdhJvTvUafz08fm9ds-_7ytnncZrpk1Zg1oDlpTKmbuiQ1aWrBKsFa22pB5h_BOdRcm9qamhNCjaZEWGFbajUXCVqju6XvPvg0aRxl72Kap1MD-ClK2oiy4HXDqxQtlqgOPsYAVu6D61U4SkrkbFbu5GxWzmYl4TKZTdDDAkFa4sdBkFG7JASMC6BHabz7D_8FJlqEJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793286784</pqid></control><display><type>article</type><title>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Eliades, J.A. ; Kim, J.K. ; Song, J.H. ; Yu, B.Y.</creator><creatorcontrib>Eliades, J.A. ; Kim, J.K. ; Song, J.H. ; Yu, B.Y.</creatorcontrib><description>Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to <100eV for ion–gas interactions, placing special demands on the deceleration optics and RFQ design. A system with large analyte transmission in the presence of gas has so far proven challenging. Presented are computer simulations using SIMION 8.1 for an ion deceleration and RFQ ion guide instrument design. Code included user-defined gas pressure gradients and threshold energies for ion–gas collisional losses. Results suggest a 3mm diameter, 35keV 36Cl− ion beam with 8eV full-width half maximum Gaussian energy spread and 35mrad angular divergence can be efficiently decelerated and then cooled in He gas, with a maximum pressure of 7mTorr, to 2eV within 450mm in the RFQs. Vacuum transmissions were 100%. Ion energy distributions at initial RFQ capture are shown to be much larger than the average value expected from the deceleration potential and this appears to be a general result arising from kinetic energy gain in the RFQ field. In these simulations, a potential for deceleration to 25eV resulted in a 30eV average energy distribution with a small fraction of ions >70eV.</description><identifier>ISSN: 0168-583X</identifier><identifier>EISSN: 1872-9584</identifier><identifier>DOI: 10.1016/j.nimb.2015.08.032</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerator mass spectrometry (AMS) ; Accelerators ; Computer simulation ; Deceleration ; Design analysis ; Ion beams ; Ion cooling ; Kinetic energy ; Negative ion ; Quadrupoles ; Radio-frequency quadrupole (RFQ) ; Spreads</subject><ispartof>Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, 2015-10, Vol.361, p.311-316</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-7ec807d3c7630607695495bfbc90c807988e68cd6fd68001dc109f9fb1fc89763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nimb.2015.08.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Eliades, J.A.</creatorcontrib><creatorcontrib>Kim, J.K.</creatorcontrib><creatorcontrib>Song, J.H.</creatorcontrib><creatorcontrib>Yu, B.Y.</creatorcontrib><title>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</title><title>Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms</title><description>Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to <100eV for ion–gas interactions, placing special demands on the deceleration optics and RFQ design. A system with large analyte transmission in the presence of gas has so far proven challenging. Presented are computer simulations using SIMION 8.1 for an ion deceleration and RFQ ion guide instrument design. Code included user-defined gas pressure gradients and threshold energies for ion–gas collisional losses. Results suggest a 3mm diameter, 35keV 36Cl− ion beam with 8eV full-width half maximum Gaussian energy spread and 35mrad angular divergence can be efficiently decelerated and then cooled in He gas, with a maximum pressure of 7mTorr, to 2eV within 450mm in the RFQs. Vacuum transmissions were 100%. Ion energy distributions at initial RFQ capture are shown to be much larger than the average value expected from the deceleration potential and this appears to be a general result arising from kinetic energy gain in the RFQ field. In these simulations, a potential for deceleration to 25eV resulted in a 30eV average energy distribution with a small fraction of ions >70eV.</description><subject>Accelerator mass spectrometry (AMS)</subject><subject>Accelerators</subject><subject>Computer simulation</subject><subject>Deceleration</subject><subject>Design analysis</subject><subject>Ion beams</subject><subject>Ion cooling</subject><subject>Kinetic energy</subject><subject>Negative ion</subject><subject>Quadrupoles</subject><subject>Radio-frequency quadrupole (RFQ)</subject><subject>Spreads</subject><issn>0168-583X</issn><issn>1872-9584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1D3ji6KUV2tJC4sVs_Eo28aKJN0JhSFjbsgutyf57qd2zXCDD-0xmHoRuKckpofX9Lh9c3-YFoSwnPCdlcYZWlDdFJhivztEqhXjGePl1ia5i3JF0WMlW6Hvj-_00QsDR9VOnRueHiK0PWGEDGjoIfzWsBoODMs5jG-AwwaCP-DApE6a97wC7IY5h6mEYF1if0PSe6RZUH6_RhVVdhJvTvUafz08fm9ds-_7ytnncZrpk1Zg1oDlpTKmbuiQ1aWrBKsFa22pB5h_BOdRcm9qamhNCjaZEWGFbajUXCVqju6XvPvg0aRxl72Kap1MD-ClK2oiy4HXDqxQtlqgOPsYAVu6D61U4SkrkbFbu5GxWzmYl4TKZTdDDAkFa4sdBkFG7JASMC6BHabz7D_8FJlqEJA</recordid><startdate>20151015</startdate><enddate>20151015</enddate><creator>Eliades, J.A.</creator><creator>Kim, J.K.</creator><creator>Song, J.H.</creator><creator>Yu, B.Y.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151015</creationdate><title>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</title><author>Eliades, J.A. ; Kim, J.K. ; Song, J.H. ; Yu, B.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-7ec807d3c7630607695495bfbc90c807988e68cd6fd68001dc109f9fb1fc89763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accelerator mass spectrometry (AMS)</topic><topic>Accelerators</topic><topic>Computer simulation</topic><topic>Deceleration</topic><topic>Design analysis</topic><topic>Ion beams</topic><topic>Ion cooling</topic><topic>Kinetic energy</topic><topic>Negative ion</topic><topic>Quadrupoles</topic><topic>Radio-frequency quadrupole (RFQ)</topic><topic>Spreads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliades, J.A.</creatorcontrib><creatorcontrib>Kim, J.K.</creatorcontrib><creatorcontrib>Song, J.H.</creatorcontrib><creatorcontrib>Yu, B.Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliades, J.A.</au><au>Kim, J.K.</au><au>Song, J.H.</au><au>Yu, B.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams</atitle><jtitle>Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms</jtitle><date>2015-10-15</date><risdate>2015</risdate><volume>361</volume><spage>311</spage><epage>316</epage><pages>311-316</pages><issn>0168-583X</issn><eissn>1872-9584</eissn><abstract>Radio-frequency quadrupole (RFQ) technology incorporated into the low energy ion beam line of an accelerator system can greatly broaden the range of applications and facilitate unique experimental capabilities. However, ten’s of keV kinetic energy negative ion beams with large emittances and energy spreads must first be decelerated down to <100eV for ion–gas interactions, placing special demands on the deceleration optics and RFQ design. A system with large analyte transmission in the presence of gas has so far proven challenging. Presented are computer simulations using SIMION 8.1 for an ion deceleration and RFQ ion guide instrument design. Code included user-defined gas pressure gradients and threshold energies for ion–gas collisional losses. Results suggest a 3mm diameter, 35keV 36Cl− ion beam with 8eV full-width half maximum Gaussian energy spread and 35mrad angular divergence can be efficiently decelerated and then cooled in He gas, with a maximum pressure of 7mTorr, to 2eV within 450mm in the RFQs. Vacuum transmissions were 100%. Ion energy distributions at initial RFQ capture are shown to be much larger than the average value expected from the deceleration potential and this appears to be a general result arising from kinetic energy gain in the RFQ field. In these simulations, a potential for deceleration to 25eV resulted in a 30eV average energy distribution with a small fraction of ions >70eV.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nimb.2015.08.032</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-583X |
ispartof | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, 2015-10, Vol.361, p.311-316 |
issn | 0168-583X 1872-9584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793286784 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Accelerator mass spectrometry (AMS) Accelerators Computer simulation Deceleration Design analysis Ion beams Ion cooling Kinetic energy Negative ion Quadrupoles Radio-frequency quadrupole (RFQ) Spreads |
title | Computer simulations for a deceleration and radio frequency quadrupole instrument for accelerator ion beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T11%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulations%20for%20a%20deceleration%20and%20radio%20frequency%20quadrupole%20instrument%20for%20accelerator%20ion%20beams&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20B,%20Beam%20interactions%20with%20materials%20and%20atoms&rft.au=Eliades,%20J.A.&rft.date=2015-10-15&rft.volume=361&rft.spage=311&rft.epage=316&rft.pages=311-316&rft.issn=0168-583X&rft.eissn=1872-9584&rft_id=info:doi/10.1016/j.nimb.2015.08.032&rft_dat=%3Cproquest_cross%3E1793286784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793286784&rft_id=info:pmid/&rft_els_id=S0168583X15007673&rfr_iscdi=true |