A simulated annealing algorithm for sparse recovery by l0 minimization

This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2014-05, Vol.131, p.98-104
Hauptverfasser: Du, Xinpeng, Cheng, Lizhi, Chen, Daiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue
container_start_page 98
container_title Neurocomputing (Amsterdam)
container_volume 131
creator Du, Xinpeng
Cheng, Lizhi
Chen, Daiqiang
description This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.
doi_str_mv 10.1016/j.neucom.2013.10.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793286712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213011235</els_id><sourcerecordid>1793286712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEWWbmbMa14boRSrQsGNrkOa3KkpM0lNZgrjrzdlXLu6cLjnwPchdE9JTgktHw-5g1H7PmeE8hTlhJcXaEHrimU1q8tLtCANKzLGKbtGNzEeCKEVZc0CbVY42n7s1AAGK-dAddbtser2Ptjhq8etDzgeVYiAA2h_gjDh3YQ7gnvrbG9_1GC9u0VXreoi3P3dJfrcPH-sX7Pt-8vberXNNCvEkCkogDesFYIITepCFIoaIwxRpdCaNhVnrVGs1pRVtCxKs9tVjeKamYpx0Ri-RA_z7jH47xHiIHsbNXSdcuDHKGnV8ASc2NKrmF918DEGaOUx2F6FSVIiz9rkQc7a5FnbOU3aUu1prkHCOFkIMmoLToOxiX-Qxtv_B34BOy538Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793286712</pqid></control><display><type>article</type><title>A simulated annealing algorithm for sparse recovery by l0 minimization</title><source>Elsevier ScienceDirect Journals</source><creator>Du, Xinpeng ; Cheng, Lizhi ; Chen, Daiqiang</creator><creatorcontrib>Du, Xinpeng ; Cheng, Lizhi ; Chen, Daiqiang</creatorcontrib><description>This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.10.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Compressed ; Compressed sensing ; Greedy pursuit ; l0 minimization ; Mathematical models ; Minimization ; Optimization ; Recovery ; Sampling ; Simulated annealing ; Sparse recovery</subject><ispartof>Neurocomputing (Amsterdam), 2014-05, Vol.131, p.98-104</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</citedby><cites>FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</cites><orcidid>0000-0001-5274-128X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231213011235$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Du, Xinpeng</creatorcontrib><creatorcontrib>Cheng, Lizhi</creatorcontrib><creatorcontrib>Chen, Daiqiang</creatorcontrib><title>A simulated annealing algorithm for sparse recovery by l0 minimization</title><title>Neurocomputing (Amsterdam)</title><description>This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.</description><subject>Algorithms</subject><subject>Compressed</subject><subject>Compressed sensing</subject><subject>Greedy pursuit</subject><subject>l0 minimization</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Sampling</subject><subject>Simulated annealing</subject><subject>Sparse recovery</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEWWbmbMa14boRSrQsGNrkOa3KkpM0lNZgrjrzdlXLu6cLjnwPchdE9JTgktHw-5g1H7PmeE8hTlhJcXaEHrimU1q8tLtCANKzLGKbtGNzEeCKEVZc0CbVY42n7s1AAGK-dAddbtser2Ptjhq8etDzgeVYiAA2h_gjDh3YQ7gnvrbG9_1GC9u0VXreoi3P3dJfrcPH-sX7Pt-8vberXNNCvEkCkogDesFYIITepCFIoaIwxRpdCaNhVnrVGs1pRVtCxKs9tVjeKamYpx0Ri-RA_z7jH47xHiIHsbNXSdcuDHKGnV8ASc2NKrmF918DEGaOUx2F6FSVIiz9rkQc7a5FnbOU3aUu1prkHCOFkIMmoLToOxiX-Qxtv_B34BOy538Q</recordid><startdate>20140505</startdate><enddate>20140505</enddate><creator>Du, Xinpeng</creator><creator>Cheng, Lizhi</creator><creator>Chen, Daiqiang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5274-128X</orcidid></search><sort><creationdate>20140505</creationdate><title>A simulated annealing algorithm for sparse recovery by l0 minimization</title><author>Du, Xinpeng ; Cheng, Lizhi ; Chen, Daiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Compressed</topic><topic>Compressed sensing</topic><topic>Greedy pursuit</topic><topic>l0 minimization</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Sampling</topic><topic>Simulated annealing</topic><topic>Sparse recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xinpeng</creatorcontrib><creatorcontrib>Cheng, Lizhi</creatorcontrib><creatorcontrib>Chen, Daiqiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xinpeng</au><au>Cheng, Lizhi</au><au>Chen, Daiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simulated annealing algorithm for sparse recovery by l0 minimization</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-05-05</date><risdate>2014</risdate><volume>131</volume><spage>98</spage><epage>104</epage><pages>98-104</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.10.036</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5274-128X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2014-05, Vol.131, p.98-104
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1793286712
source Elsevier ScienceDirect Journals
subjects Algorithms
Compressed
Compressed sensing
Greedy pursuit
l0 minimization
Mathematical models
Minimization
Optimization
Recovery
Sampling
Simulated annealing
Sparse recovery
title A simulated annealing algorithm for sparse recovery by l0 minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simulated%20annealing%20algorithm%20for%20sparse%20recovery%20by%20l0%20minimization&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Du,%20Xinpeng&rft.date=2014-05-05&rft.volume=131&rft.spage=98&rft.epage=104&rft.pages=98-104&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.10.036&rft_dat=%3Cproquest_cross%3E1793286712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793286712&rft_id=info:pmid/&rft_els_id=S0925231213011235&rfr_iscdi=true