A simulated annealing algorithm for sparse recovery by l0 minimization
This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP)...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2014-05, Vol.131, p.98-104 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | |
container_start_page | 98 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 131 |
creator | Du, Xinpeng Cheng, Lizhi Chen, Daiqiang |
description | This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent. |
doi_str_mv | 10.1016/j.neucom.2013.10.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793286712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213011235</els_id><sourcerecordid>1793286712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wEWWbmbMa14boRSrQsGNrkOa3KkpM0lNZgrjrzdlXLu6cLjnwPchdE9JTgktHw-5g1H7PmeE8hTlhJcXaEHrimU1q8tLtCANKzLGKbtGNzEeCKEVZc0CbVY42n7s1AAGK-dAddbtser2Ptjhq8etDzgeVYiAA2h_gjDh3YQ7gnvrbG9_1GC9u0VXreoi3P3dJfrcPH-sX7Pt-8vberXNNCvEkCkogDesFYIITepCFIoaIwxRpdCaNhVnrVGs1pRVtCxKs9tVjeKamYpx0Ri-RA_z7jH47xHiIHsbNXSdcuDHKGnV8ASc2NKrmF918DEGaOUx2F6FSVIiz9rkQc7a5FnbOU3aUu1prkHCOFkIMmoLToOxiX-Qxtv_B34BOy538Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793286712</pqid></control><display><type>article</type><title>A simulated annealing algorithm for sparse recovery by l0 minimization</title><source>Elsevier ScienceDirect Journals</source><creator>Du, Xinpeng ; Cheng, Lizhi ; Chen, Daiqiang</creator><creatorcontrib>Du, Xinpeng ; Cheng, Lizhi ; Chen, Daiqiang</creatorcontrib><description>This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.10.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Compressed ; Compressed sensing ; Greedy pursuit ; l0 minimization ; Mathematical models ; Minimization ; Optimization ; Recovery ; Sampling ; Simulated annealing ; Sparse recovery</subject><ispartof>Neurocomputing (Amsterdam), 2014-05, Vol.131, p.98-104</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</citedby><cites>FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</cites><orcidid>0000-0001-5274-128X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231213011235$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Du, Xinpeng</creatorcontrib><creatorcontrib>Cheng, Lizhi</creatorcontrib><creatorcontrib>Chen, Daiqiang</creatorcontrib><title>A simulated annealing algorithm for sparse recovery by l0 minimization</title><title>Neurocomputing (Amsterdam)</title><description>This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.</description><subject>Algorithms</subject><subject>Compressed</subject><subject>Compressed sensing</subject><subject>Greedy pursuit</subject><subject>l0 minimization</subject><subject>Mathematical models</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Recovery</subject><subject>Sampling</subject><subject>Simulated annealing</subject><subject>Sparse recovery</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wEWWbmbMa14boRSrQsGNrkOa3KkpM0lNZgrjrzdlXLu6cLjnwPchdE9JTgktHw-5g1H7PmeE8hTlhJcXaEHrimU1q8tLtCANKzLGKbtGNzEeCKEVZc0CbVY42n7s1AAGK-dAddbtser2Ptjhq8etDzgeVYiAA2h_gjDh3YQ7gnvrbG9_1GC9u0VXreoi3P3dJfrcPH-sX7Pt-8vberXNNCvEkCkogDesFYIITepCFIoaIwxRpdCaNhVnrVGs1pRVtCxKs9tVjeKamYpx0Ri-RA_z7jH47xHiIHsbNXSdcuDHKGnV8ASc2NKrmF918DEGaOUx2F6FSVIiz9rkQc7a5FnbOU3aUu1prkHCOFkIMmoLToOxiX-Qxtv_B34BOy538Q</recordid><startdate>20140505</startdate><enddate>20140505</enddate><creator>Du, Xinpeng</creator><creator>Cheng, Lizhi</creator><creator>Chen, Daiqiang</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5274-128X</orcidid></search><sort><creationdate>20140505</creationdate><title>A simulated annealing algorithm for sparse recovery by l0 minimization</title><author>Du, Xinpeng ; Cheng, Lizhi ; Chen, Daiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c254t-ae5e392f4404c08545a1dd4d0a64cc19732fda28c1271656dbb79a3c2d72349d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Compressed</topic><topic>Compressed sensing</topic><topic>Greedy pursuit</topic><topic>l0 minimization</topic><topic>Mathematical models</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Recovery</topic><topic>Sampling</topic><topic>Simulated annealing</topic><topic>Sparse recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xinpeng</creatorcontrib><creatorcontrib>Cheng, Lizhi</creatorcontrib><creatorcontrib>Chen, Daiqiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xinpeng</au><au>Cheng, Lizhi</au><au>Chen, Daiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A simulated annealing algorithm for sparse recovery by l0 minimization</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-05-05</date><risdate>2014</risdate><volume>131</volume><spage>98</spage><epage>104</epage><pages>98-104</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper addresses the sparse recovery problem by l0 minimization, which is of central importance in the compressed sensing theory. We model the problem as a combinatorial optimization problem and present a novel algorithm termed SASR based on simulated annealing (SA) and some greedy pursuit (GP) algorithms. In SASR, the initial solution is designed using the simple thresholding algorithm, and the generating mechanism is designed using the strategies existed in the subspace pursuit algorithm and the compressed sampling matching pursuit algorithm. On both the random Gaussian data and the face recognition task, the numerical simulation results illustrate the efficiency of SASR. Compared with the existing sparse recovery algorithms, SASR is more efficient in finding global optimums and performs relatively fast in some good cases. That is, SASR inherits the advantage of SA in finding global optimums and the advantage of GP in fast speed to some extent.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.10.036</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5274-128X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2014-05, Vol.131, p.98-104 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793286712 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Compressed Compressed sensing Greedy pursuit l0 minimization Mathematical models Minimization Optimization Recovery Sampling Simulated annealing Sparse recovery |
title | A simulated annealing algorithm for sparse recovery by l0 minimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20simulated%20annealing%20algorithm%20for%20sparse%20recovery%20by%20l0%20minimization&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Du,%20Xinpeng&rft.date=2014-05-05&rft.volume=131&rft.spage=98&rft.epage=104&rft.pages=98-104&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.10.036&rft_dat=%3Cproquest_cross%3E1793286712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793286712&rft_id=info:pmid/&rft_els_id=S0925231213011235&rfr_iscdi=true |