Discriminant similarity and variance preserving projection for feature extraction

In this paper, a novel supervised dimensionality reduction algorithm called discriminant similarity and variance preserving projection (DSVPP) is presented for feature extraction and recognition. More specifically, we redefine the intrinsic graph and penalty graph to model the intra-class compactnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2014-09, Vol.139, p.180-188
Hauptverfasser: Huang, Pu, Chen, Caikou, Tang, Zhenmin, Yang, Zhangjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 180
container_title Neurocomputing (Amsterdam)
container_volume 139
creator Huang, Pu
Chen, Caikou
Tang, Zhenmin
Yang, Zhangjing
description In this paper, a novel supervised dimensionality reduction algorithm called discriminant similarity and variance preserving projection (DSVPP) is presented for feature extraction and recognition. More specifically, we redefine the intrinsic graph and penalty graph to model the intra-class compactness and inter-class separability of data points, where the intrinsic graph characterizes the similarity information of the same-class points and the penalty graph characterizes the variance information of the not-same-class points. Using the two graphs, the within-class scatter and the between-class scatter are computed, and then a concise feature extraction criterion is raised via minimizing the difference between them. Experimental results on the Wine data set, ORL, FERET and AR face databases show the effectiveness of the proposed method.
doi_str_mv 10.1016/j.neucom.2014.02.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793285088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231214004640</els_id><sourcerecordid>1793285088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-898379ec08d286b2f0a8491bd0e110d0608731321bd64d522df4dbb7d82a0e13</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFb_gYtsBDeJdyavyUaQ-oSCCN0Pk5kbmZAmdSYp9t97a4tLV_dwOfdxPsauOSQceHHXJj1OZlgnAniWgEggK0_YjMtSxFLI4pTNoBJ5LFIuztlFCC0AL7moZuzj0QXj3dr1uh-jQKLT3o27SPc22pLUvcFo4zGg37r-k-TQohnd0EfN4KMG9Th5jPB79Pq3fcnOGt0FvDrWOVs9P60Wr_Hy_eVt8bCMTVpUYywrmZYVGpCWPqxFA1pmFa8tIOdgoQBZpjwV1Ckymwthm8zWdWml0GRJ5-z2sJYe-powjGpNSbDrdI_DFBQvq1TIHKQka3awGj-E4LFRG0qs_U5xUHuAqlUHgGoPUIFQBJDGbo4XdDC6azyhcOFvVsiszGWRku_-4ENKu3XoVTAOCZt1nkgpO7j_D_0AaWiJag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793285088</pqid></control><display><type>article</type><title>Discriminant similarity and variance preserving projection for feature extraction</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Pu ; Chen, Caikou ; Tang, Zhenmin ; Yang, Zhangjing</creator><creatorcontrib>Huang, Pu ; Chen, Caikou ; Tang, Zhenmin ; Yang, Zhangjing</creatorcontrib><description>In this paper, a novel supervised dimensionality reduction algorithm called discriminant similarity and variance preserving projection (DSVPP) is presented for feature extraction and recognition. More specifically, we redefine the intrinsic graph and penalty graph to model the intra-class compactness and inter-class separability of data points, where the intrinsic graph characterizes the similarity information of the same-class points and the penalty graph characterizes the variance information of the not-same-class points. Using the two graphs, the within-class scatter and the between-class scatter are computed, and then a concise feature extraction criterion is raised via minimizing the difference between them. Experimental results on the Wine data set, ORL, FERET and AR face databases show the effectiveness of the proposed method.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2014.02.047</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data points ; Data processing. List processing. Character string processing ; Dimensionality reduction ; Exact sciences and technology ; Feature extraction ; Graphs ; Intrinsic graph ; Manifold-based learning ; Memory organisation. Data processing ; Pattern recognition. Digital image processing. Computational geometry ; Penalty graph ; Preserving ; Projection ; Scatter ; Similarity ; Software ; Variance</subject><ispartof>Neurocomputing (Amsterdam), 2014-09, Vol.139, p.180-188</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-898379ec08d286b2f0a8491bd0e110d0608731321bd64d522df4dbb7d82a0e13</citedby><cites>FETCH-LOGICAL-c369t-898379ec08d286b2f0a8491bd0e110d0608731321bd64d522df4dbb7d82a0e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2014.02.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28475863$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Pu</creatorcontrib><creatorcontrib>Chen, Caikou</creatorcontrib><creatorcontrib>Tang, Zhenmin</creatorcontrib><creatorcontrib>Yang, Zhangjing</creatorcontrib><title>Discriminant similarity and variance preserving projection for feature extraction</title><title>Neurocomputing (Amsterdam)</title><description>In this paper, a novel supervised dimensionality reduction algorithm called discriminant similarity and variance preserving projection (DSVPP) is presented for feature extraction and recognition. More specifically, we redefine the intrinsic graph and penalty graph to model the intra-class compactness and inter-class separability of data points, where the intrinsic graph characterizes the similarity information of the same-class points and the penalty graph characterizes the variance information of the not-same-class points. Using the two graphs, the within-class scatter and the between-class scatter are computed, and then a concise feature extraction criterion is raised via minimizing the difference between them. Experimental results on the Wine data set, ORL, FERET and AR face databases show the effectiveness of the proposed method.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data points</subject><subject>Data processing. List processing. Character string processing</subject><subject>Dimensionality reduction</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Graphs</subject><subject>Intrinsic graph</subject><subject>Manifold-based learning</subject><subject>Memory organisation. Data processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Penalty graph</subject><subject>Preserving</subject><subject>Projection</subject><subject>Scatter</subject><subject>Similarity</subject><subject>Software</subject><subject>Variance</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFb_gYtsBDeJdyavyUaQ-oSCCN0Pk5kbmZAmdSYp9t97a4tLV_dwOfdxPsauOSQceHHXJj1OZlgnAniWgEggK0_YjMtSxFLI4pTNoBJ5LFIuztlFCC0AL7moZuzj0QXj3dr1uh-jQKLT3o27SPc22pLUvcFo4zGg37r-k-TQohnd0EfN4KMG9Th5jPB79Pq3fcnOGt0FvDrWOVs9P60Wr_Hy_eVt8bCMTVpUYywrmZYVGpCWPqxFA1pmFa8tIOdgoQBZpjwV1Ckymwthm8zWdWml0GRJ5-z2sJYe-powjGpNSbDrdI_DFBQvq1TIHKQka3awGj-E4LFRG0qs_U5xUHuAqlUHgGoPUIFQBJDGbo4XdDC6azyhcOFvVsiszGWRku_-4ENKu3XoVTAOCZt1nkgpO7j_D_0AaWiJag</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Huang, Pu</creator><creator>Chen, Caikou</creator><creator>Tang, Zhenmin</creator><creator>Yang, Zhangjing</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140902</creationdate><title>Discriminant similarity and variance preserving projection for feature extraction</title><author>Huang, Pu ; Chen, Caikou ; Tang, Zhenmin ; Yang, Zhangjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-898379ec08d286b2f0a8491bd0e110d0608731321bd64d522df4dbb7d82a0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data points</topic><topic>Data processing. List processing. Character string processing</topic><topic>Dimensionality reduction</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Graphs</topic><topic>Intrinsic graph</topic><topic>Manifold-based learning</topic><topic>Memory organisation. Data processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Penalty graph</topic><topic>Preserving</topic><topic>Projection</topic><topic>Scatter</topic><topic>Similarity</topic><topic>Software</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Pu</creatorcontrib><creatorcontrib>Chen, Caikou</creatorcontrib><creatorcontrib>Tang, Zhenmin</creatorcontrib><creatorcontrib>Yang, Zhangjing</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Pu</au><au>Chen, Caikou</au><au>Tang, Zhenmin</au><au>Yang, Zhangjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminant similarity and variance preserving projection for feature extraction</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-09-02</date><risdate>2014</risdate><volume>139</volume><spage>180</spage><epage>188</epage><pages>180-188</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this paper, a novel supervised dimensionality reduction algorithm called discriminant similarity and variance preserving projection (DSVPP) is presented for feature extraction and recognition. More specifically, we redefine the intrinsic graph and penalty graph to model the intra-class compactness and inter-class separability of data points, where the intrinsic graph characterizes the similarity information of the same-class points and the penalty graph characterizes the variance information of the not-same-class points. Using the two graphs, the within-class scatter and the between-class scatter are computed, and then a concise feature extraction criterion is raised via minimizing the difference between them. Experimental results on the Wine data set, ORL, FERET and AR face databases show the effectiveness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2014.02.047</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2014-09, Vol.139, p.180-188
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1793285088
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data points
Data processing. List processing. Character string processing
Dimensionality reduction
Exact sciences and technology
Feature extraction
Graphs
Intrinsic graph
Manifold-based learning
Memory organisation. Data processing
Pattern recognition. Digital image processing. Computational geometry
Penalty graph
Preserving
Projection
Scatter
Similarity
Software
Variance
title Discriminant similarity and variance preserving projection for feature extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminant%20similarity%20and%20variance%20preserving%20projection%20for%20feature%20extraction&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Huang,%20Pu&rft.date=2014-09-02&rft.volume=139&rft.spage=180&rft.epage=188&rft.pages=180-188&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2014.02.047&rft_dat=%3Cproquest_cross%3E1793285088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793285088&rft_id=info:pmid/&rft_els_id=S0925231214004640&rfr_iscdi=true