A Framework for Integrating DBpedia into a Multi-Modality Ontology Image Retrieval

DBpedia provides great opportunities for researchers as a domain concept to enrich resource and information extraction. The integration of DBpedia with ontology-based approach in image retrieval gives complete and rich semantics information to the image. A recent trend in ontology-based image retrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advancements in computing technology 2013-08, Vol.5 (12), p.65-65
Hauptverfasser: Khalid, Yanti Idaya Aspura M, Noah, Shahrul Azman Mohd, Abdullah, Siti Norul Huda Sheikh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 12
container_start_page 65
container_title International journal of advancements in computing technology
container_volume 5
creator Khalid, Yanti Idaya Aspura M
Noah, Shahrul Azman Mohd
Abdullah, Siti Norul Huda Sheikh
description DBpedia provides great opportunities for researchers as a domain concept to enrich resource and information extraction. The integration of DBpedia with ontology-based approach in image retrieval gives complete and rich semantics information to the image. A recent trend in ontology-based image retrieval is to fuse the two basic modalities of images namely textual content (keywords) and visual features, and known as multi-modality ontology. In this paper, the authors present the framework for integrating structured content in DBpedia resources with multi-modality ontology-based image extraction and retrieval system and describe how this framework bridges the semantic gap in content-based image retrieval. The goal is to populate a knowledge base with online image news resources from 12 sport types in the BBC sport news, which has three main items: image, image caption and news information. This system will yield high precision and include diverse sports images for specific entities. A multi-modality ontology retrieval system with complete relational facts about entities will improves the precision of retrieval.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793284976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793284976</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17932849763</originalsourceid><addsrcrecordid>eNqVir0KwjAURoMoWLTvcEeXQtqoNaN_RQcRirtc7LVE06YmqdK3t4Mv4Lecw-EbsCBJhIikEOmwd84X0YoLOWahcw_eT6Y8jhcBy9eQWazoY-wT7sbCsfZUWvSqLmG3aahQCKr2BhBOrfYqOpkCtfIdnPuqTdnBscKSICdvFb1RT9nojtpR-OOEzbL9ZXuIGmteLTl_rZS7kdZYk2ndNU6lSFZzmS7FH9cv4tlFLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793284976</pqid></control><display><type>article</type><title>A Framework for Integrating DBpedia into a Multi-Modality Ontology Image Retrieval</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khalid, Yanti Idaya Aspura M ; Noah, Shahrul Azman Mohd ; Abdullah, Siti Norul Huda Sheikh</creator><creatorcontrib>Khalid, Yanti Idaya Aspura M ; Noah, Shahrul Azman Mohd ; Abdullah, Siti Norul Huda Sheikh</creatorcontrib><description>DBpedia provides great opportunities for researchers as a domain concept to enrich resource and information extraction. The integration of DBpedia with ontology-based approach in image retrieval gives complete and rich semantics information to the image. A recent trend in ontology-based image retrieval is to fuse the two basic modalities of images namely textual content (keywords) and visual features, and known as multi-modality ontology. In this paper, the authors present the framework for integrating structured content in DBpedia resources with multi-modality ontology-based image extraction and retrieval system and describe how this framework bridges the semantic gap in content-based image retrieval. The goal is to populate a knowledge base with online image news resources from 12 sport types in the BBC sport news, which has three main items: image, image caption and news information. This system will yield high precision and include diverse sports images for specific entities. A multi-modality ontology retrieval system with complete relational facts about entities will improves the precision of retrieval.</description><identifier>ISSN: 2005-8039</identifier><identifier>EISSN: 2233-9337</identifier><language>eng</language><subject>Fuses ; Knowledge bases (artificial intelligence) ; Knowledge representation ; News ; Retrieval ; Semantics ; Visual</subject><ispartof>International journal of advancements in computing technology, 2013-08, Vol.5 (12), p.65-65</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Khalid, Yanti Idaya Aspura M</creatorcontrib><creatorcontrib>Noah, Shahrul Azman Mohd</creatorcontrib><creatorcontrib>Abdullah, Siti Norul Huda Sheikh</creatorcontrib><title>A Framework for Integrating DBpedia into a Multi-Modality Ontology Image Retrieval</title><title>International journal of advancements in computing technology</title><description>DBpedia provides great opportunities for researchers as a domain concept to enrich resource and information extraction. The integration of DBpedia with ontology-based approach in image retrieval gives complete and rich semantics information to the image. A recent trend in ontology-based image retrieval is to fuse the two basic modalities of images namely textual content (keywords) and visual features, and known as multi-modality ontology. In this paper, the authors present the framework for integrating structured content in DBpedia resources with multi-modality ontology-based image extraction and retrieval system and describe how this framework bridges the semantic gap in content-based image retrieval. The goal is to populate a knowledge base with online image news resources from 12 sport types in the BBC sport news, which has three main items: image, image caption and news information. This system will yield high precision and include diverse sports images for specific entities. A multi-modality ontology retrieval system with complete relational facts about entities will improves the precision of retrieval.</description><subject>Fuses</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Knowledge representation</subject><subject>News</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Visual</subject><issn>2005-8039</issn><issn>2233-9337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVir0KwjAURoMoWLTvcEeXQtqoNaN_RQcRirtc7LVE06YmqdK3t4Mv4Lecw-EbsCBJhIikEOmwd84X0YoLOWahcw_eT6Y8jhcBy9eQWazoY-wT7sbCsfZUWvSqLmG3aahQCKr2BhBOrfYqOpkCtfIdnPuqTdnBscKSICdvFb1RT9nojtpR-OOEzbL9ZXuIGmteLTl_rZS7kdZYk2ndNU6lSFZzmS7FH9cv4tlFLw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Khalid, Yanti Idaya Aspura M</creator><creator>Noah, Shahrul Azman Mohd</creator><creator>Abdullah, Siti Norul Huda Sheikh</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130801</creationdate><title>A Framework for Integrating DBpedia into a Multi-Modality Ontology Image Retrieval</title><author>Khalid, Yanti Idaya Aspura M ; Noah, Shahrul Azman Mohd ; Abdullah, Siti Norul Huda Sheikh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17932849763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Fuses</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Knowledge representation</topic><topic>News</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Yanti Idaya Aspura M</creatorcontrib><creatorcontrib>Noah, Shahrul Azman Mohd</creatorcontrib><creatorcontrib>Abdullah, Siti Norul Huda Sheikh</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of advancements in computing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalid, Yanti Idaya Aspura M</au><au>Noah, Shahrul Azman Mohd</au><au>Abdullah, Siti Norul Huda Sheikh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Integrating DBpedia into a Multi-Modality Ontology Image Retrieval</atitle><jtitle>International journal of advancements in computing technology</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>5</volume><issue>12</issue><spage>65</spage><epage>65</epage><pages>65-65</pages><issn>2005-8039</issn><eissn>2233-9337</eissn><abstract>DBpedia provides great opportunities for researchers as a domain concept to enrich resource and information extraction. The integration of DBpedia with ontology-based approach in image retrieval gives complete and rich semantics information to the image. A recent trend in ontology-based image retrieval is to fuse the two basic modalities of images namely textual content (keywords) and visual features, and known as multi-modality ontology. In this paper, the authors present the framework for integrating structured content in DBpedia resources with multi-modality ontology-based image extraction and retrieval system and describe how this framework bridges the semantic gap in content-based image retrieval. The goal is to populate a knowledge base with online image news resources from 12 sport types in the BBC sport news, which has three main items: image, image caption and news information. This system will yield high precision and include diverse sports images for specific entities. A multi-modality ontology retrieval system with complete relational facts about entities will improves the precision of retrieval.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 2005-8039
ispartof International journal of advancements in computing technology, 2013-08, Vol.5 (12), p.65-65
issn 2005-8039
2233-9337
language eng
recordid cdi_proquest_miscellaneous_1793284976
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Fuses
Knowledge bases (artificial intelligence)
Knowledge representation
News
Retrieval
Semantics
Visual
title A Framework for Integrating DBpedia into a Multi-Modality Ontology Image Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Integrating%20DBpedia%20into%20a%20Multi-Modality%20Ontology%20Image%20Retrieval&rft.jtitle=International%20journal%20of%20advancements%20in%20computing%20technology&rft.au=Khalid,%20Yanti%20Idaya%20Aspura%20M&rft.date=2013-08-01&rft.volume=5&rft.issue=12&rft.spage=65&rft.epage=65&rft.pages=65-65&rft.issn=2005-8039&rft.eissn=2233-9337&rft_id=info:doi/&rft_dat=%3Cproquest%3E1793284976%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793284976&rft_id=info:pmid/&rfr_iscdi=true