SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data
Sensors that monitor around the clock are everywhere. Due to the sheer amount of data these sensors can generate, the resources required to store, protect personal information, and analyze them are enormous. Since noteworthy events happen only occasionally, it is not necessary to store or analyze th...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2014-08, Vol.138, p.41-60 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | |
container_start_page | 41 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 138 |
creator | Banerjee, Bonny Dutta, Jayanta K. |
description | Sensors that monitor around the clock are everywhere. Due to the sheer amount of data these sensors can generate, the resources required to store, protect personal information, and analyze them are enormous. Since noteworthy events happen only occasionally, it is not necessary to store or analyze the data generated at every instant of time. Rather, it is imperative for a smart memory to learn the norms in such data so that only the abnormal (or salient) events may be stored. We present a general-purpose biologically plausible computational framework, called SELP, for learning the norms (or invariances) as a hierarchy of features from space- and time-varying data in an unsupervised and online manner from saliencies or surprises in the data. Given streaming data, this framework runs a relentless cycle – detect unexpected or Salient event, Explain the salient event, Learn from its explanation, Predict the future events – involving the real external world and its internal model, and hence the name. Experimental results from different functions of this framework are presented with a particular emphasis on the role of lateral connections in each layer. |
doi_str_mv | 10.1016/j.neucom.2013.02.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793282764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213007273</els_id><sourcerecordid>1793282764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f23b77489d4a3cb04dc4a1925d7ab0d065524c85f095cb1d3c094e1d5e31858f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AxdZumnNq23qQhiG8QEDCuo6pMntmLFtatIq_ns71LWruznn454PoUtKUkpofr1POxiNb1NGKE8JS4kQR2hBZcESyWR-jBakZFnCOGWn6CzGPSG0oKxcIPWy2T7f4BXeQQdBN0k_ht5HwHXQLXz78IFrH3ADOnSu2-HhHXDnQxungG9x1I2DzjiI2HU49npwfoC29xMKWz3oc3RS6ybCxd9dore7zev6Idk-3T-uV9vEcF4OSc14VRRCllZobioirBGaTj_bQlfEkjzLmDAyq0mZmYpabkgpgNoMOJWZrPkSXc3cPvjPEeKgWhcNNI3uwI9R0aLkTLIiF1NUzFETfIwBatUH1-rwoyhRB59qr2af6uBTEaYmn1Ptdq7BNOPLQVDRHLaDdQHMoKx3_wN-AdzigP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793282764</pqid></control><display><type>article</type><title>SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data</title><source>Elsevier ScienceDirect Journals</source><creator>Banerjee, Bonny ; Dutta, Jayanta K.</creator><creatorcontrib>Banerjee, Bonny ; Dutta, Jayanta K.</creatorcontrib><description>Sensors that monitor around the clock are everywhere. Due to the sheer amount of data these sensors can generate, the resources required to store, protect personal information, and analyze them are enormous. Since noteworthy events happen only occasionally, it is not necessary to store or analyze the data generated at every instant of time. Rather, it is imperative for a smart memory to learn the norms in such data so that only the abnormal (or salient) events may be stored. We present a general-purpose biologically plausible computational framework, called SELP, for learning the norms (or invariances) as a hierarchy of features from space- and time-varying data in an unsupervised and online manner from saliencies or surprises in the data. Given streaming data, this framework runs a relentless cycle – detect unexpected or Salient event, Explain the salient event, Learn from its explanation, Predict the future events – involving the real external world and its internal model, and hence the name. Experimental results from different functions of this framework are presented with a particular emphasis on the role of lateral connections in each layer.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.02.044</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Explain ; Hierarchical feature learning ; Hierarchies ; Invariance ; Lateral connections ; Learning ; Mathematical analysis ; Mathematical models ; Monitors ; Norms ; Predict ; Sensors ; Stores ; Surprise</subject><ispartof>Neurocomputing (Amsterdam), 2014-08, Vol.138, p.41-60</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f23b77489d4a3cb04dc4a1925d7ab0d065524c85f095cb1d3c094e1d5e31858f3</citedby><cites>FETCH-LOGICAL-c339t-f23b77489d4a3cb04dc4a1925d7ab0d065524c85f095cb1d3c094e1d5e31858f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231213007273$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Banerjee, Bonny</creatorcontrib><creatorcontrib>Dutta, Jayanta K.</creatorcontrib><title>SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data</title><title>Neurocomputing (Amsterdam)</title><description>Sensors that monitor around the clock are everywhere. Due to the sheer amount of data these sensors can generate, the resources required to store, protect personal information, and analyze them are enormous. Since noteworthy events happen only occasionally, it is not necessary to store or analyze the data generated at every instant of time. Rather, it is imperative for a smart memory to learn the norms in such data so that only the abnormal (or salient) events may be stored. We present a general-purpose biologically plausible computational framework, called SELP, for learning the norms (or invariances) as a hierarchy of features from space- and time-varying data in an unsupervised and online manner from saliencies or surprises in the data. Given streaming data, this framework runs a relentless cycle – detect unexpected or Salient event, Explain the salient event, Learn from its explanation, Predict the future events – involving the real external world and its internal model, and hence the name. Experimental results from different functions of this framework are presented with a particular emphasis on the role of lateral connections in each layer.</description><subject>Explain</subject><subject>Hierarchical feature learning</subject><subject>Hierarchies</subject><subject>Invariance</subject><subject>Lateral connections</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monitors</subject><subject>Norms</subject><subject>Predict</subject><subject>Sensors</subject><subject>Stores</subject><subject>Surprise</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AxdZumnNq23qQhiG8QEDCuo6pMntmLFtatIq_ns71LWruznn454PoUtKUkpofr1POxiNb1NGKE8JS4kQR2hBZcESyWR-jBakZFnCOGWn6CzGPSG0oKxcIPWy2T7f4BXeQQdBN0k_ht5HwHXQLXz78IFrH3ADOnSu2-HhHXDnQxungG9x1I2DzjiI2HU49npwfoC29xMKWz3oc3RS6ybCxd9dore7zev6Idk-3T-uV9vEcF4OSc14VRRCllZobioirBGaTj_bQlfEkjzLmDAyq0mZmYpabkgpgNoMOJWZrPkSXc3cPvjPEeKgWhcNNI3uwI9R0aLkTLIiF1NUzFETfIwBatUH1-rwoyhRB59qr2af6uBTEaYmn1Ptdq7BNOPLQVDRHLaDdQHMoKx3_wN-AdzigP0</recordid><startdate>20140822</startdate><enddate>20140822</enddate><creator>Banerjee, Bonny</creator><creator>Dutta, Jayanta K.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140822</creationdate><title>SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data</title><author>Banerjee, Bonny ; Dutta, Jayanta K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f23b77489d4a3cb04dc4a1925d7ab0d065524c85f095cb1d3c094e1d5e31858f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Explain</topic><topic>Hierarchical feature learning</topic><topic>Hierarchies</topic><topic>Invariance</topic><topic>Lateral connections</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monitors</topic><topic>Norms</topic><topic>Predict</topic><topic>Sensors</topic><topic>Stores</topic><topic>Surprise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Bonny</creatorcontrib><creatorcontrib>Dutta, Jayanta K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Bonny</au><au>Dutta, Jayanta K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-08-22</date><risdate>2014</risdate><volume>138</volume><spage>41</spage><epage>60</epage><pages>41-60</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Sensors that monitor around the clock are everywhere. Due to the sheer amount of data these sensors can generate, the resources required to store, protect personal information, and analyze them are enormous. Since noteworthy events happen only occasionally, it is not necessary to store or analyze the data generated at every instant of time. Rather, it is imperative for a smart memory to learn the norms in such data so that only the abnormal (or salient) events may be stored. We present a general-purpose biologically plausible computational framework, called SELP, for learning the norms (or invariances) as a hierarchy of features from space- and time-varying data in an unsupervised and online manner from saliencies or surprises in the data. Given streaming data, this framework runs a relentless cycle – detect unexpected or Salient event, Explain the salient event, Learn from its explanation, Predict the future events – involving the real external world and its internal model, and hence the name. Experimental results from different functions of this framework are presented with a particular emphasis on the role of lateral connections in each layer.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.02.044</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2014-08, Vol.138, p.41-60 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793282764 |
source | Elsevier ScienceDirect Journals |
subjects | Explain Hierarchical feature learning Hierarchies Invariance Lateral connections Learning Mathematical analysis Mathematical models Monitors Norms Predict Sensors Stores Surprise |
title | SELP: A general-purpose framework for learning the norms from saliencies in spatiotemporal data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SELP:%20A%20general-purpose%20framework%20for%20learning%20the%20norms%20from%20saliencies%20in%20spatiotemporal%20data&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Banerjee,%20Bonny&rft.date=2014-08-22&rft.volume=138&rft.spage=41&rft.epage=60&rft.pages=41-60&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.02.044&rft_dat=%3Cproquest_cross%3E1793282764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793282764&rft_id=info:pmid/&rft_els_id=S0925231213007273&rfr_iscdi=true |