Comparison of on-line detectors for field flow fractionation analysis of nanomaterials

Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2013-01, Vol.104, p.140-148
Hauptverfasser: Bednar, A.J., Poda, A.R., Mitrano, D.M., Kennedy, A.J., Gray, E.P., Ranville, J.F., Hayes, C.A., Crocker, F.H., Steevens, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue
container_start_page 140
container_title Talanta (Oxford)
container_volume 104
creator Bednar, A.J.
Poda, A.R.
Mitrano, D.M.
Kennedy, A.J.
Gray, E.P.
Ranville, J.F.
Hayes, C.A.
Crocker, F.H.
Steevens, J.A.
description Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10–100-fold lower than DLS or FFF–UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP–MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide–zinc sulfide core–shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles. ► Simultaneous multi-element detection of nanomaterials. ► Quantum Dot 4 element detection. ► Environmentally relevant concentrations of nanomaterials. ► Fate and transformation. ► Coating formation, and transformation, and detection.
doi_str_mv 10.1016/j.talanta.2012.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793282671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003991401200940X</els_id><sourcerecordid>1331090907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-83543649fcbd4c03ee2dd27af63f75450868fd799ad4e67777fee4bc435d00763</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVoSDYfPyHBx17sjjy2ZZ1KWdqkEOilyVVopRFosaWt5G3Jv4-W3eaaGZi5PO8MPIzdcWg48OHLtln0pMOimxZ423DeAIxnbMVHgTX2Aj-xFQDKWvIOLtlVzlsAaBHwgl222Eshga_YyzrOO518jqGKroqhnnygytJCZokpVy6mynmabOWm-K9ySZvFx6APo9JBT6_Z50M06BBnvVDyeso37NyVRbenfc2ef3z_vX6sn349_Fx_e6oNynGpR-w7HDrpzMZ2BpCotbYV2g3oRN_1MA6js0JKbTsaRClH1G1Mh70FEANes8_Hu7sU_-wpL2r22dBUzFDcZ8WFxHZsB8E_RhE5yNKioP0RNSnmnMipXfKzTq-KgzrYV1t1sq8O9hXnqtgvufvTi_1mJvue-q-7AF-PABUnfz0llY2nYMj6VHwrG_0HL94AF5qY3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1331090907</pqid></control><display><type>article</type><title>Comparison of on-line detectors for field flow fractionation analysis of nanomaterials</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bednar, A.J. ; Poda, A.R. ; Mitrano, D.M. ; Kennedy, A.J. ; Gray, E.P. ; Ranville, J.F. ; Hayes, C.A. ; Crocker, F.H. ; Steevens, J.A.</creator><creatorcontrib>Bednar, A.J. ; Poda, A.R. ; Mitrano, D.M. ; Kennedy, A.J. ; Gray, E.P. ; Ranville, J.F. ; Hayes, C.A. ; Crocker, F.H. ; Steevens, J.A.</creatorcontrib><description>Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10–100-fold lower than DLS or FFF–UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP–MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide–zinc sulfide core–shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles. ► Simultaneous multi-element detection of nanomaterials. ► Quantum Dot 4 element detection. ► Environmentally relevant concentrations of nanomaterials. ► Fate and transformation. ► Coating formation, and transformation, and detection.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2012.11.008</identifier><identifier>PMID: 23597901</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cadmium Compounds - chemistry ; Detection ; Detectors ; Field flow fractionation ; Fractionation ; Fractionation, Field Flow - methods ; ICP–AES ; ICP–MS ; Mass Spectrometry - methods ; Metal Nanoparticles - analysis ; Metal Nanoparticles - chemistry ; Metals - analysis ; Metals - chemistry ; Nanomaterials ; Nanoparticles ; Nanostructure ; Online Systems ; Quantum Dots ; Selenium - analysis ; Silver ; Sizing ; Sulfides ; Sulfides - chemistry ; Sulfur - analysis ; Zinc Compounds - chemistry</subject><ispartof>Talanta (Oxford), 2013-01, Vol.104, p.140-148</ispartof><rights>2012</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-83543649fcbd4c03ee2dd27af63f75450868fd799ad4e67777fee4bc435d00763</citedby><cites>FETCH-LOGICAL-c398t-83543649fcbd4c03ee2dd27af63f75450868fd799ad4e67777fee4bc435d00763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003991401200940X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23597901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bednar, A.J.</creatorcontrib><creatorcontrib>Poda, A.R.</creatorcontrib><creatorcontrib>Mitrano, D.M.</creatorcontrib><creatorcontrib>Kennedy, A.J.</creatorcontrib><creatorcontrib>Gray, E.P.</creatorcontrib><creatorcontrib>Ranville, J.F.</creatorcontrib><creatorcontrib>Hayes, C.A.</creatorcontrib><creatorcontrib>Crocker, F.H.</creatorcontrib><creatorcontrib>Steevens, J.A.</creatorcontrib><title>Comparison of on-line detectors for field flow fractionation analysis of nanomaterials</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10–100-fold lower than DLS or FFF–UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP–MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide–zinc sulfide core–shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles. ► Simultaneous multi-element detection of nanomaterials. ► Quantum Dot 4 element detection. ► Environmentally relevant concentrations of nanomaterials. ► Fate and transformation. ► Coating formation, and transformation, and detection.</description><subject>Cadmium Compounds - chemistry</subject><subject>Detection</subject><subject>Detectors</subject><subject>Field flow fractionation</subject><subject>Fractionation</subject><subject>Fractionation, Field Flow - methods</subject><subject>ICP–AES</subject><subject>ICP–MS</subject><subject>Mass Spectrometry - methods</subject><subject>Metal Nanoparticles - analysis</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metals - analysis</subject><subject>Metals - chemistry</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Online Systems</subject><subject>Quantum Dots</subject><subject>Selenium - analysis</subject><subject>Silver</subject><subject>Sizing</subject><subject>Sulfides</subject><subject>Sulfides - chemistry</subject><subject>Sulfur - analysis</subject><subject>Zinc Compounds - chemistry</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAQhkVoSDYfPyHBx17sjjy2ZZ1KWdqkEOilyVVopRFosaWt5G3Jv4-W3eaaGZi5PO8MPIzdcWg48OHLtln0pMOimxZ423DeAIxnbMVHgTX2Aj-xFQDKWvIOLtlVzlsAaBHwgl222Eshga_YyzrOO518jqGKroqhnnygytJCZokpVy6mynmabOWm-K9ySZvFx6APo9JBT6_Z50M06BBnvVDyeso37NyVRbenfc2ef3z_vX6sn349_Fx_e6oNynGpR-w7HDrpzMZ2BpCotbYV2g3oRN_1MA6js0JKbTsaRClH1G1Mh70FEANes8_Hu7sU_-wpL2r22dBUzFDcZ8WFxHZsB8E_RhE5yNKioP0RNSnmnMipXfKzTq-KgzrYV1t1sq8O9hXnqtgvufvTi_1mJvue-q-7AF-PABUnfz0llY2nYMj6VHwrG_0HL94AF5qY3Q</recordid><startdate>20130130</startdate><enddate>20130130</enddate><creator>Bednar, A.J.</creator><creator>Poda, A.R.</creator><creator>Mitrano, D.M.</creator><creator>Kennedy, A.J.</creator><creator>Gray, E.P.</creator><creator>Ranville, J.F.</creator><creator>Hayes, C.A.</creator><creator>Crocker, F.H.</creator><creator>Steevens, J.A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130130</creationdate><title>Comparison of on-line detectors for field flow fractionation analysis of nanomaterials</title><author>Bednar, A.J. ; Poda, A.R. ; Mitrano, D.M. ; Kennedy, A.J. ; Gray, E.P. ; Ranville, J.F. ; Hayes, C.A. ; Crocker, F.H. ; Steevens, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-83543649fcbd4c03ee2dd27af63f75450868fd799ad4e67777fee4bc435d00763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cadmium Compounds - chemistry</topic><topic>Detection</topic><topic>Detectors</topic><topic>Field flow fractionation</topic><topic>Fractionation</topic><topic>Fractionation, Field Flow - methods</topic><topic>ICP–AES</topic><topic>ICP–MS</topic><topic>Mass Spectrometry - methods</topic><topic>Metal Nanoparticles - analysis</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metals - analysis</topic><topic>Metals - chemistry</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Online Systems</topic><topic>Quantum Dots</topic><topic>Selenium - analysis</topic><topic>Silver</topic><topic>Sizing</topic><topic>Sulfides</topic><topic>Sulfides - chemistry</topic><topic>Sulfur - analysis</topic><topic>Zinc Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednar, A.J.</creatorcontrib><creatorcontrib>Poda, A.R.</creatorcontrib><creatorcontrib>Mitrano, D.M.</creatorcontrib><creatorcontrib>Kennedy, A.J.</creatorcontrib><creatorcontrib>Gray, E.P.</creatorcontrib><creatorcontrib>Ranville, J.F.</creatorcontrib><creatorcontrib>Hayes, C.A.</creatorcontrib><creatorcontrib>Crocker, F.H.</creatorcontrib><creatorcontrib>Steevens, J.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednar, A.J.</au><au>Poda, A.R.</au><au>Mitrano, D.M.</au><au>Kennedy, A.J.</au><au>Gray, E.P.</au><au>Ranville, J.F.</au><au>Hayes, C.A.</au><au>Crocker, F.H.</au><au>Steevens, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of on-line detectors for field flow fractionation analysis of nanomaterials</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2013-01-30</date><risdate>2013</risdate><volume>104</volume><spage>140</spage><epage>148</epage><pages>140-148</pages><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>Characterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information. Further, these detectors do not respond directly to the mass concentration of nanoparticles. The present work describes the advantages achieved when interfacing sensitive and elemental specific detectors, such as inductively coupled plasma atomic emission spectroscopy and mass spectrometry, to FFF separation analysis to provide high resolution nanoparticle sizing and compositional analysis at the μg/L concentration level, a detection at least 10–100-fold lower than DLS or FFF–UV techniques. The full benefits are only achieved by utilization of all detector capabilities, such as dynamic reaction cell (DRC) ICP–MS. Such low-level detection and characterization capability is critical to nanomaterial investigations at biologically and environmentally relevant concentrations. The techniques have been modified and applied to characterization of all four elemental constituents of cadmium selenide–zinc sulfide core–shell quantum dots, and silver nanoparticles with gold seed cores. Additionally, sulfide coatings on silver nanoparticles can be detected as a potential means to determine environmental aging of nanoparticles. ► Simultaneous multi-element detection of nanomaterials. ► Quantum Dot 4 element detection. ► Environmentally relevant concentrations of nanomaterials. ► Fate and transformation. ► Coating formation, and transformation, and detection.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23597901</pmid><doi>10.1016/j.talanta.2012.11.008</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2013-01, Vol.104, p.140-148
issn 0039-9140
1873-3573
language eng
recordid cdi_proquest_miscellaneous_1793282671
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cadmium Compounds - chemistry
Detection
Detectors
Field flow fractionation
Fractionation
Fractionation, Field Flow - methods
ICP–AES
ICP–MS
Mass Spectrometry - methods
Metal Nanoparticles - analysis
Metal Nanoparticles - chemistry
Metals - analysis
Metals - chemistry
Nanomaterials
Nanoparticles
Nanostructure
Online Systems
Quantum Dots
Selenium - analysis
Silver
Sizing
Sulfides
Sulfides - chemistry
Sulfur - analysis
Zinc Compounds - chemistry
title Comparison of on-line detectors for field flow fractionation analysis of nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20on-line%20detectors%20for%20field%20flow%20fractionation%20analysis%20of%20nanomaterials&rft.jtitle=Talanta%20(Oxford)&rft.au=Bednar,%20A.J.&rft.date=2013-01-30&rft.volume=104&rft.spage=140&rft.epage=148&rft.pages=140-148&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2012.11.008&rft_dat=%3Cproquest_cross%3E1331090907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1331090907&rft_id=info:pmid/23597901&rft_els_id=S003991401200940X&rfr_iscdi=true