Enhanced particle swarm optimizer incorporating a weighted particle

This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2014-01, Vol.124, p.218-227
Hauptverfasser: Li, Nai-Jen, Wang, Wen-June, James Hsu, Chen-Chien, Chang, Wei, Chou, Hao-Gong, Chang, Jun-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue
container_start_page 218
container_title Neurocomputing (Amsterdam)
container_volume 124
creator Li, Nai-Jen
Wang, Wen-June
James Hsu, Chen-Chien
Chang, Wei
Chou, Hao-Gong
Chang, Jun-Wei
description This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.
doi_str_mv 10.1016/j.neucom.2013.07.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793282308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213007376</els_id><sourcerecordid>1793282308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5a87Ftkosgy_oBC170HNJ0upulbWrSddFfb0oX8SRzmMvzvsM8CF0TnBFMirtd1sHeuDajmLAM8wzj_ATNiOA0FVQUp2iGJc1Tygg9Rxch7DAmnFA5Q8tVt9WdgSrptR-saSAJB-3bxPWDbe03-MR2xvneeT3YbpPo5AB2sx3-JC7RWa2bAFfHPUfvj6u35XO6fn16WT6sU8MKOaSkBCYEBYpFSY0ueQkLoUld1IJUhmBTSKgpSCFpqSsuck0ikguOBWelFGyObqfe3ruPPYRBtTYYaBrdgdsHRbhkVFCGR3Qxoca7EDzUqve21f5LEaxGZ2qnJmdqdKYwV9FZjN0cL-hgdFP7qMaG32wsj7PgkbufOIjvflrwKhgLo0brwQyqcvb_Qz9cLISk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793282308</pqid></control><display><type>article</type><title>Enhanced particle swarm optimizer incorporating a weighted particle</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Nai-Jen ; Wang, Wen-June ; James Hsu, Chen-Chien ; Chang, Wei ; Chou, Hao-Gong ; Chang, Jun-Wei</creator><creatorcontrib>Li, Nai-Jen ; Wang, Wen-June ; James Hsu, Chen-Chien ; Chang, Wei ; Chou, Hao-Gong ; Chang, Jun-Wei</creatorcontrib><description>This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.07.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Benchmarking ; Computer science; control theory; systems ; Computer simulation ; Connectionism. Neural networks ; Control system synthesis ; Control theory. Systems ; Convergence ; Design engineering ; Evolutionary ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inverted pendulum system ; Modelling and identification ; Neural network ; Neural networks ; Optimization ; Particle swarm optimization (PSO) ; Physics ; PID controller design ; Searching ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Swarm intelligence ; Weighted particle</subject><ispartof>Neurocomputing (Amsterdam), 2014-01, Vol.124, p.218-227</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</citedby><cites>FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231213007376$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28282847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Nai-Jen</creatorcontrib><creatorcontrib>Wang, Wen-June</creatorcontrib><creatorcontrib>James Hsu, Chen-Chien</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Chou, Hao-Gong</creatorcontrib><creatorcontrib>Chang, Jun-Wei</creatorcontrib><title>Enhanced particle swarm optimizer incorporating a weighted particle</title><title>Neurocomputing (Amsterdam)</title><description>This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Benchmarking</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Connectionism. Neural networks</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Evolutionary</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inverted pendulum system</subject><subject>Modelling and identification</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization (PSO)</subject><subject>Physics</subject><subject>PID controller design</subject><subject>Searching</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Swarm intelligence</subject><subject>Weighted particle</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5a87Ftkosgy_oBC170HNJ0upulbWrSddFfb0oX8SRzmMvzvsM8CF0TnBFMirtd1sHeuDajmLAM8wzj_ATNiOA0FVQUp2iGJc1Tygg9Rxch7DAmnFA5Q8tVt9WdgSrptR-saSAJB-3bxPWDbe03-MR2xvneeT3YbpPo5AB2sx3-JC7RWa2bAFfHPUfvj6u35XO6fn16WT6sU8MKOaSkBCYEBYpFSY0ueQkLoUld1IJUhmBTSKgpSCFpqSsuck0ikguOBWelFGyObqfe3ruPPYRBtTYYaBrdgdsHRbhkVFCGR3Qxoca7EDzUqve21f5LEaxGZ2qnJmdqdKYwV9FZjN0cL-hgdFP7qMaG32wsj7PgkbufOIjvflrwKhgLo0brwQyqcvb_Qz9cLISk</recordid><startdate>20140126</startdate><enddate>20140126</enddate><creator>Li, Nai-Jen</creator><creator>Wang, Wen-June</creator><creator>James Hsu, Chen-Chien</creator><creator>Chang, Wei</creator><creator>Chou, Hao-Gong</creator><creator>Chang, Jun-Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140126</creationdate><title>Enhanced particle swarm optimizer incorporating a weighted particle</title><author>Li, Nai-Jen ; Wang, Wen-June ; James Hsu, Chen-Chien ; Chang, Wei ; Chou, Hao-Gong ; Chang, Jun-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Benchmarking</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Connectionism. Neural networks</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Evolutionary</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inverted pendulum system</topic><topic>Modelling and identification</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization (PSO)</topic><topic>Physics</topic><topic>PID controller design</topic><topic>Searching</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Swarm intelligence</topic><topic>Weighted particle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Nai-Jen</creatorcontrib><creatorcontrib>Wang, Wen-June</creatorcontrib><creatorcontrib>James Hsu, Chen-Chien</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Chou, Hao-Gong</creatorcontrib><creatorcontrib>Chang, Jun-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Nai-Jen</au><au>Wang, Wen-June</au><au>James Hsu, Chen-Chien</au><au>Chang, Wei</au><au>Chou, Hao-Gong</au><au>Chang, Jun-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced particle swarm optimizer incorporating a weighted particle</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-01-26</date><risdate>2014</risdate><volume>124</volume><spage>218</spage><epage>227</epage><pages>218-227</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.07.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2014-01, Vol.124, p.218-227
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1793282308
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Benchmarking
Computer science
control theory
systems
Computer simulation
Connectionism. Neural networks
Control system synthesis
Control theory. Systems
Convergence
Design engineering
Evolutionary
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Inverted pendulum system
Modelling and identification
Neural network
Neural networks
Optimization
Particle swarm optimization (PSO)
Physics
PID controller design
Searching
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Swarm intelligence
Weighted particle
title Enhanced particle swarm optimizer incorporating a weighted particle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20particle%20swarm%20optimizer%20incorporating%20a%20weighted%20particle&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Li,%20Nai-Jen&rft.date=2014-01-26&rft.volume=124&rft.spage=218&rft.epage=227&rft.pages=218-227&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.07.005&rft_dat=%3Cproquest_cross%3E1793282308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793282308&rft_id=info:pmid/&rft_els_id=S0925231213007376&rfr_iscdi=true