Enhanced particle swarm optimizer incorporating a weighted particle
This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle....
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2014-01, Vol.124, p.218-227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | |
container_start_page | 218 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 124 |
creator | Li, Nai-Jen Wang, Wen-June James Hsu, Chen-Chien Chang, Wei Chou, Hao-Gong Chang, Jun-Wei |
description | This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems. |
doi_str_mv | 10.1016/j.neucom.2013.07.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793282308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213007376</els_id><sourcerecordid>1793282308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5a87Ftkosgy_oBC170HNJ0upulbWrSddFfb0oX8SRzmMvzvsM8CF0TnBFMirtd1sHeuDajmLAM8wzj_ATNiOA0FVQUp2iGJc1Tygg9Rxch7DAmnFA5Q8tVt9WdgSrptR-saSAJB-3bxPWDbe03-MR2xvneeT3YbpPo5AB2sx3-JC7RWa2bAFfHPUfvj6u35XO6fn16WT6sU8MKOaSkBCYEBYpFSY0ueQkLoUld1IJUhmBTSKgpSCFpqSsuck0ikguOBWelFGyObqfe3ruPPYRBtTYYaBrdgdsHRbhkVFCGR3Qxoca7EDzUqve21f5LEaxGZ2qnJmdqdKYwV9FZjN0cL-hgdFP7qMaG32wsj7PgkbufOIjvflrwKhgLo0brwQyqcvb_Qz9cLISk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793282308</pqid></control><display><type>article</type><title>Enhanced particle swarm optimizer incorporating a weighted particle</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Nai-Jen ; Wang, Wen-June ; James Hsu, Chen-Chien ; Chang, Wei ; Chou, Hao-Gong ; Chang, Jun-Wei</creator><creatorcontrib>Li, Nai-Jen ; Wang, Wen-June ; James Hsu, Chen-Chien ; Chang, Wei ; Chou, Hao-Gong ; Chang, Jun-Wei</creatorcontrib><description>This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.07.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Benchmarking ; Computer science; control theory; systems ; Computer simulation ; Connectionism. Neural networks ; Control system synthesis ; Control theory. Systems ; Convergence ; Design engineering ; Evolutionary ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Inverted pendulum system ; Modelling and identification ; Neural network ; Neural networks ; Optimization ; Particle swarm optimization (PSO) ; Physics ; PID controller design ; Searching ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Swarm intelligence ; Weighted particle</subject><ispartof>Neurocomputing (Amsterdam), 2014-01, Vol.124, p.218-227</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</citedby><cites>FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231213007376$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28282847$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Nai-Jen</creatorcontrib><creatorcontrib>Wang, Wen-June</creatorcontrib><creatorcontrib>James Hsu, Chen-Chien</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Chou, Hao-Gong</creatorcontrib><creatorcontrib>Chang, Jun-Wei</creatorcontrib><title>Enhanced particle swarm optimizer incorporating a weighted particle</title><title>Neurocomputing (Amsterdam)</title><description>This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Benchmarking</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Connectionism. Neural networks</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Convergence</subject><subject>Design engineering</subject><subject>Evolutionary</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inverted pendulum system</subject><subject>Modelling and identification</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Particle swarm optimization (PSO)</subject><subject>Physics</subject><subject>PID controller design</subject><subject>Searching</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Swarm intelligence</subject><subject>Weighted particle</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9CF5a87Ftkosgy_oBC170HNJ0upulbWrSddFfb0oX8SRzmMvzvsM8CF0TnBFMirtd1sHeuDajmLAM8wzj_ATNiOA0FVQUp2iGJc1Tygg9Rxch7DAmnFA5Q8tVt9WdgSrptR-saSAJB-3bxPWDbe03-MR2xvneeT3YbpPo5AB2sx3-JC7RWa2bAFfHPUfvj6u35XO6fn16WT6sU8MKOaSkBCYEBYpFSY0ueQkLoUld1IJUhmBTSKgpSCFpqSsuck0ikguOBWelFGyObqfe3ruPPYRBtTYYaBrdgdsHRbhkVFCGR3Qxoca7EDzUqve21f5LEaxGZ2qnJmdqdKYwV9FZjN0cL-hgdFP7qMaG32wsj7PgkbufOIjvflrwKhgLo0brwQyqcvb_Qz9cLISk</recordid><startdate>20140126</startdate><enddate>20140126</enddate><creator>Li, Nai-Jen</creator><creator>Wang, Wen-June</creator><creator>James Hsu, Chen-Chien</creator><creator>Chang, Wei</creator><creator>Chou, Hao-Gong</creator><creator>Chang, Jun-Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140126</creationdate><title>Enhanced particle swarm optimizer incorporating a weighted particle</title><author>Li, Nai-Jen ; Wang, Wen-June ; James Hsu, Chen-Chien ; Chang, Wei ; Chou, Hao-Gong ; Chang, Jun-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-1be3882e208b2cab7be48a1f6f81dc10c69ef2e9892bad785a17be5870873b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Benchmarking</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Connectionism. Neural networks</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Convergence</topic><topic>Design engineering</topic><topic>Evolutionary</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inverted pendulum system</topic><topic>Modelling and identification</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Particle swarm optimization (PSO)</topic><topic>Physics</topic><topic>PID controller design</topic><topic>Searching</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Swarm intelligence</topic><topic>Weighted particle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Nai-Jen</creatorcontrib><creatorcontrib>Wang, Wen-June</creatorcontrib><creatorcontrib>James Hsu, Chen-Chien</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Chou, Hao-Gong</creatorcontrib><creatorcontrib>Chang, Jun-Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Nai-Jen</au><au>Wang, Wen-June</au><au>James Hsu, Chen-Chien</au><au>Chang, Wei</au><au>Chou, Hao-Gong</au><au>Chang, Jun-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced particle swarm optimizer incorporating a weighted particle</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-01-26</date><risdate>2014</risdate><volume>124</volume><spage>218</spage><epage>227</epage><pages>218-227</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This study proposes an enhanced particle swarm optimizer incorporating a weighted particle (EPSOWP) to improve the evolutionary performance for a set of benchmark functions. In conventional particle swarm optimizer (PSO), there are two principal forces to guide the moving direction of each particle. However, if the current particle lies too close to either the personal best particle or the global best particle, the velocity is mainly updated by only one term. As a result, search step becomes smaller and the optimization of the swarm is likely to be trapped into a local optimum. To address this problem, we define a weighted particle for incorporation into the particle swarm optimization. Because the weighted particle has a better opportunity getting closer to the optimal solution than the global best particle during the evolution, the EPSOWP is capable of guiding the swarm to a better direction to search the optimal solution. Simulation results show the effectiveness of the EPSOWP, which outperforms various evolutionary algorithms on a selected set of benchmark functions. Furthermore, the proposed EPSOWP is applied to controller design and parameter identification for an inverted pendulum system as well as parameter learning of neural network for function approximation to show its viability to solve practical design problems.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.07.005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2014-01, Vol.124, p.218-227 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793282308 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial intelligence Benchmarking Computer science control theory systems Computer simulation Connectionism. Neural networks Control system synthesis Control theory. Systems Convergence Design engineering Evolutionary Exact sciences and technology Fundamental areas of phenomenology (including applications) Inverted pendulum system Modelling and identification Neural network Neural networks Optimization Particle swarm optimization (PSO) Physics PID controller design Searching Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Swarm intelligence Weighted particle |
title | Enhanced particle swarm optimizer incorporating a weighted particle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20particle%20swarm%20optimizer%20incorporating%20a%20weighted%20particle&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Li,%20Nai-Jen&rft.date=2014-01-26&rft.volume=124&rft.spage=218&rft.epage=227&rft.pages=218-227&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.07.005&rft_dat=%3Cproquest_cross%3E1793282308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793282308&rft_id=info:pmid/&rft_els_id=S0925231213007376&rfr_iscdi=true |