Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea

[Display omitted] Tracheal damage, abnormality or absence can result from the growth of tumors or from Congenital High Airway Obstruction Syndrome. No optimal or routine treatment has been established for tracheal repair, despite numerous attempts with natural and artificial prostheses. The fetal tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2016-03, Vol.33, p.176-182
Hauptverfasser: Mansfield, Elizabeth G., Greene, Vaughn K., Auguste, Debra T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue
container_start_page 176
container_title Acta biomaterialia
container_volume 33
creator Mansfield, Elizabeth G.
Greene, Vaughn K.
Auguste, Debra T.
description [Display omitted] Tracheal damage, abnormality or absence can result from the growth of tumors or from Congenital High Airway Obstruction Syndrome. No optimal or routine treatment has been established for tracheal repair, despite numerous attempts with natural and artificial prostheses. The fetal trachea is comprised of cartilaginous rings connected by an elastomeric tissue. In an effort to design an engineered trachea replacement, we have synthesized 2-hydroxyethyl methacrylate hydrogels with moduli of 67±3.1kPa (soft) and 13.0±1.8MPa (hard). Given the criteria for longitudinal extensibility and lateral rigidity applied during respiration, we evaluated a series of patterned hydrogels with different sizes of hard and soft segments to mimic fetal tracheas. A 1:2 ratio of soft:hard segments resulted in a construct capable of 11.0±1% extension within the elastic range. Tubular constructs with this ratio required similar load/length for cyclic compression as ovine trachea samples. Achieving biomimetic mechanical properties in a trachea replacement may be essential for achieving normal respiration in recipient patients. Fetal abnormalities or tumors can result in tracheal absence or damage. Despite numerous attempts with natural and artificial replacements, there is still no routine treatment for tracheal repair. The literature recognizes the importance of tracheal lateral rigidity and longitudinal extensibility for normal respiration. Achieving closely matched mechanical properties may provide proper function and help decrease implant fibrosis and subsequent occlusion. In this study, we evaluated the mechanics of a series of patterned, tubular hydrogels with different ratios of hard and soft segments to mimic alternating cartilage and ligament sections in fetal tracheas. We compared our results to that of sheep trachea. This is the first report to assess both radial rigidity and longitudinal extensibility in an engineered trachea construct.
doi_str_mv 10.1016/j.actbio.2016.01.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793280976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706116300344</els_id><sourcerecordid>1770861733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2d6984d5177077e2b48671212de8e97c8e1a790f1892e2e2e2aea899f89e829f3</originalsourceid><addsrcrecordid>eNqNkUuLFDEQgIMo7rr6D0Ry9GC3efQklYsgiy9Y0IPehFCTVDsZ-rEm6QX_vVln9ShLDqkiXz3Ix9hzKXoppHl97DHUfVp71bJeyF7o4QE7l2ChszsDD1tsB9VZYeQZe1LKUQgNUsFjdqYMKKk1nLPvX7BWygvFV7xu-23CzEvAcVynWPic5hT4tC4_Ut1iWnDiuESeMaYWzhQOuKRQ-DryeiC-0LpgbS81YzgQPmWPRpwKPbu7L9i39---Xn7srj5_-HT59qoLg9nVTkXjYIg7aa2wltR-AGOlkioSkLMBSKJ1YpTgFP05SAjOjeAIlBv1BXt56nud158blernVAJNE7aNtuKldVqBcNbcA7Ua9GCUuw8qwEirdUOHExryWkqm0V_nNGP-5aXwt7b80Z9s-VtbXkjfbLWyF3cTtv1M8V_RXz0NeHMCqP3eTaLsS0i0BIopU6g-run_E34DJKimtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770861733</pqid></control><display><type>article</type><title>Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mansfield, Elizabeth G. ; Greene, Vaughn K. ; Auguste, Debra T.</creator><creatorcontrib>Mansfield, Elizabeth G. ; Greene, Vaughn K. ; Auguste, Debra T.</creatorcontrib><description>[Display omitted] Tracheal damage, abnormality or absence can result from the growth of tumors or from Congenital High Airway Obstruction Syndrome. No optimal or routine treatment has been established for tracheal repair, despite numerous attempts with natural and artificial prostheses. The fetal trachea is comprised of cartilaginous rings connected by an elastomeric tissue. In an effort to design an engineered trachea replacement, we have synthesized 2-hydroxyethyl methacrylate hydrogels with moduli of 67±3.1kPa (soft) and 13.0±1.8MPa (hard). Given the criteria for longitudinal extensibility and lateral rigidity applied during respiration, we evaluated a series of patterned hydrogels with different sizes of hard and soft segments to mimic fetal tracheas. A 1:2 ratio of soft:hard segments resulted in a construct capable of 11.0±1% extension within the elastic range. Tubular constructs with this ratio required similar load/length for cyclic compression as ovine trachea samples. Achieving biomimetic mechanical properties in a trachea replacement may be essential for achieving normal respiration in recipient patients. Fetal abnormalities or tumors can result in tracheal absence or damage. Despite numerous attempts with natural and artificial replacements, there is still no routine treatment for tracheal repair. The literature recognizes the importance of tracheal lateral rigidity and longitudinal extensibility for normal respiration. Achieving closely matched mechanical properties may provide proper function and help decrease implant fibrosis and subsequent occlusion. In this study, we evaluated the mechanics of a series of patterned, tubular hydrogels with different ratios of hard and soft segments to mimic alternating cartilage and ligament sections in fetal tracheas. We compared our results to that of sheep trachea. This is the first report to assess both radial rigidity and longitudinal extensibility in an engineered trachea construct.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2016.01.034</identifier><identifier>PMID: 26821338</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Animals, Newborn ; Biomechanical Phenomena ; Compressive Strength ; Construction ; Elastic Modulus ; Extensibility ; HEMA ; Hybrid ; Hydrogel ; Hydrogels ; In Vitro Techniques ; Pattern ; Respiration ; Rigidity ; Segments ; Sheep ; Surgical implants ; Temperature ; Tissue engineering ; Tissue Scaffolds - chemistry ; Trachea ; Trachea - physiology</subject><ispartof>Acta biomaterialia, 2016-03, Vol.33, p.176-182</ispartof><rights>2016 Acta Materialia Inc.</rights><rights>Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2d6984d5177077e2b48671212de8e97c8e1a790f1892e2e2e2aea899f89e829f3</citedby><cites>FETCH-LOGICAL-c465t-2d6984d5177077e2b48671212de8e97c8e1a790f1892e2e2e2aea899f89e829f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706116300344$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26821338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansfield, Elizabeth G.</creatorcontrib><creatorcontrib>Greene, Vaughn K.</creatorcontrib><creatorcontrib>Auguste, Debra T.</creatorcontrib><title>Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Tracheal damage, abnormality or absence can result from the growth of tumors or from Congenital High Airway Obstruction Syndrome. No optimal or routine treatment has been established for tracheal repair, despite numerous attempts with natural and artificial prostheses. The fetal trachea is comprised of cartilaginous rings connected by an elastomeric tissue. In an effort to design an engineered trachea replacement, we have synthesized 2-hydroxyethyl methacrylate hydrogels with moduli of 67±3.1kPa (soft) and 13.0±1.8MPa (hard). Given the criteria for longitudinal extensibility and lateral rigidity applied during respiration, we evaluated a series of patterned hydrogels with different sizes of hard and soft segments to mimic fetal tracheas. A 1:2 ratio of soft:hard segments resulted in a construct capable of 11.0±1% extension within the elastic range. Tubular constructs with this ratio required similar load/length for cyclic compression as ovine trachea samples. Achieving biomimetic mechanical properties in a trachea replacement may be essential for achieving normal respiration in recipient patients. Fetal abnormalities or tumors can result in tracheal absence or damage. Despite numerous attempts with natural and artificial replacements, there is still no routine treatment for tracheal repair. The literature recognizes the importance of tracheal lateral rigidity and longitudinal extensibility for normal respiration. Achieving closely matched mechanical properties may provide proper function and help decrease implant fibrosis and subsequent occlusion. In this study, we evaluated the mechanics of a series of patterned, tubular hydrogels with different ratios of hard and soft segments to mimic alternating cartilage and ligament sections in fetal tracheas. We compared our results to that of sheep trachea. This is the first report to assess both radial rigidity and longitudinal extensibility in an engineered trachea construct.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biomechanical Phenomena</subject><subject>Compressive Strength</subject><subject>Construction</subject><subject>Elastic Modulus</subject><subject>Extensibility</subject><subject>HEMA</subject><subject>Hybrid</subject><subject>Hydrogel</subject><subject>Hydrogels</subject><subject>In Vitro Techniques</subject><subject>Pattern</subject><subject>Respiration</subject><subject>Rigidity</subject><subject>Segments</subject><subject>Sheep</subject><subject>Surgical implants</subject><subject>Temperature</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Trachea</subject><subject>Trachea - physiology</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuLFDEQgIMo7rr6D0Ry9GC3efQklYsgiy9Y0IPehFCTVDsZ-rEm6QX_vVln9ShLDqkiXz3Ix9hzKXoppHl97DHUfVp71bJeyF7o4QE7l2ChszsDD1tsB9VZYeQZe1LKUQgNUsFjdqYMKKk1nLPvX7BWygvFV7xu-23CzEvAcVynWPic5hT4tC4_Ut1iWnDiuESeMaYWzhQOuKRQ-DryeiC-0LpgbS81YzgQPmWPRpwKPbu7L9i39---Xn7srj5_-HT59qoLg9nVTkXjYIg7aa2wltR-AGOlkioSkLMBSKJ1YpTgFP05SAjOjeAIlBv1BXt56nud158blernVAJNE7aNtuKldVqBcNbcA7Ua9GCUuw8qwEirdUOHExryWkqm0V_nNGP-5aXwt7b80Z9s-VtbXkjfbLWyF3cTtv1M8V_RXz0NeHMCqP3eTaLsS0i0BIopU6g-run_E34DJKimtg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Mansfield, Elizabeth G.</creator><creator>Greene, Vaughn K.</creator><creator>Auguste, Debra T.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea</title><author>Mansfield, Elizabeth G. ; Greene, Vaughn K. ; Auguste, Debra T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2d6984d5177077e2b48671212de8e97c8e1a790f1892e2e2e2aea899f89e829f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biomechanical Phenomena</topic><topic>Compressive Strength</topic><topic>Construction</topic><topic>Elastic Modulus</topic><topic>Extensibility</topic><topic>HEMA</topic><topic>Hybrid</topic><topic>Hydrogel</topic><topic>Hydrogels</topic><topic>In Vitro Techniques</topic><topic>Pattern</topic><topic>Respiration</topic><topic>Rigidity</topic><topic>Segments</topic><topic>Sheep</topic><topic>Surgical implants</topic><topic>Temperature</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Trachea</topic><topic>Trachea - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansfield, Elizabeth G.</creatorcontrib><creatorcontrib>Greene, Vaughn K.</creatorcontrib><creatorcontrib>Auguste, Debra T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansfield, Elizabeth G.</au><au>Greene, Vaughn K.</au><au>Auguste, Debra T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2016-03</date><risdate>2016</risdate><volume>33</volume><spage>176</spage><epage>182</epage><pages>176-182</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Tracheal damage, abnormality or absence can result from the growth of tumors or from Congenital High Airway Obstruction Syndrome. No optimal or routine treatment has been established for tracheal repair, despite numerous attempts with natural and artificial prostheses. The fetal trachea is comprised of cartilaginous rings connected by an elastomeric tissue. In an effort to design an engineered trachea replacement, we have synthesized 2-hydroxyethyl methacrylate hydrogels with moduli of 67±3.1kPa (soft) and 13.0±1.8MPa (hard). Given the criteria for longitudinal extensibility and lateral rigidity applied during respiration, we evaluated a series of patterned hydrogels with different sizes of hard and soft segments to mimic fetal tracheas. A 1:2 ratio of soft:hard segments resulted in a construct capable of 11.0±1% extension within the elastic range. Tubular constructs with this ratio required similar load/length for cyclic compression as ovine trachea samples. Achieving biomimetic mechanical properties in a trachea replacement may be essential for achieving normal respiration in recipient patients. Fetal abnormalities or tumors can result in tracheal absence or damage. Despite numerous attempts with natural and artificial replacements, there is still no routine treatment for tracheal repair. The literature recognizes the importance of tracheal lateral rigidity and longitudinal extensibility for normal respiration. Achieving closely matched mechanical properties may provide proper function and help decrease implant fibrosis and subsequent occlusion. In this study, we evaluated the mechanics of a series of patterned, tubular hydrogels with different ratios of hard and soft segments to mimic alternating cartilage and ligament sections in fetal tracheas. We compared our results to that of sheep trachea. This is the first report to assess both radial rigidity and longitudinal extensibility in an engineered trachea construct.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26821338</pmid><doi>10.1016/j.actbio.2016.01.034</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2016-03, Vol.33, p.176-182
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1793280976
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Animals, Newborn
Biomechanical Phenomena
Compressive Strength
Construction
Elastic Modulus
Extensibility
HEMA
Hybrid
Hydrogel
Hydrogels
In Vitro Techniques
Pattern
Respiration
Rigidity
Segments
Sheep
Surgical implants
Temperature
Tissue engineering
Tissue Scaffolds - chemistry
Trachea
Trachea - physiology
title Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterned,%20tubular%20scaffolds%20mimic%20longitudinal%20and%20radial%20mechanics%20of%20the%20neonatal%20trachea&rft.jtitle=Acta%20biomaterialia&rft.au=Mansfield,%20Elizabeth%20G.&rft.date=2016-03&rft.volume=33&rft.spage=176&rft.epage=182&rft.pages=176-182&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2016.01.034&rft_dat=%3Cproquest_cross%3E1770861733%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770861733&rft_id=info:pmid/26821338&rft_els_id=S1742706116300344&rfr_iscdi=true