Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering

In this letter, we propose a simple yet effective unsupervised change detection approach for multitemporal synthetic aperture radar images from the perspective of clustering. This approach jointly exploits the robust Gabor wavelet representation and the advanced cascade clustering. First, a log-rati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2015-12, Vol.12 (12), p.2458-2462
Hauptverfasser: Heng-Chao Li, Celik, Turgay, Longbotham, Nathan, Emery, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2462
container_issue 12
container_start_page 2458
container_title IEEE geoscience and remote sensing letters
container_volume 12
creator Heng-Chao Li
Celik, Turgay
Longbotham, Nathan
Emery, William J.
description In this letter, we propose a simple yet effective unsupervised change detection approach for multitemporal synthetic aperture radar images from the perspective of clustering. This approach jointly exploits the robust Gabor wavelet representation and the advanced cascade clustering. First, a log-ratio image is generated from the multitemporal images. Then, to integrate contextual information in the feature extraction process, Gabor wavelets are employed to yield the representation of the log-ratio image at multiple scales and orientations, whose maximum magnitude over all orientations in each scale is concatenated to form the Gabor feature vector. Next, a cascade clustering algorithm is designed in this discriminative feature space by successively combining the first-level fuzzy c-means clustering with the second-level nearest neighbor rule. Finally, the two-level combination of the changed and unchanged results generates the final change map. Experimental results are presented to demonstrate the effectiveness of the proposed approach.
doi_str_mv 10.1109/LGRS.2015.2484220
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793280498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7300392</ieee_id><sourcerecordid>1793280498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-d5603a95de3ad4266a92aa8fc0bf58a90d30837e129d5be3f365fc583925ccd93</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSup_J7lGjrYWI0A_wFrbJpKYm2bibVPz3JrR48DQz8LzDy-N51wRPCMHqPp4tlhOKiZhQLjml-MQbESGkj0VIToedC18o-X7uXTi3w7jHZDjyPmd6Yyyagm47C-hRO8jQunZdA3ZfDEf0oestoCdoIW0LUyOTo9eubIsWqsZYXaLlwwLNK70Fd8z30Orb-DHsoURR2bkWbFFvL72zXJcOro5z7K2nz6voxY_fZvPoIfZTznnrZyLATCuRAdMZp0GgFdVa5ine5EJqhTOGJQuBUJWJDbCcBSJPhWSKijTNFBt7d4e_jTVfHbg2qQqXQlnqGkznEhIqRiXmSvbo7T90Zzpb9-16iklJOQlFT5EDlVrjnIU8aWxRafuTEJwM-pNBfzLoT476-8zNIVMAwB8fMoz7nuwXWjyAvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738824175</pqid></control><display><type>article</type><title>Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Heng-Chao Li ; Celik, Turgay ; Longbotham, Nathan ; Emery, William J.</creator><creatorcontrib>Heng-Chao Li ; Celik, Turgay ; Longbotham, Nathan ; Emery, William J.</creatorcontrib><description>In this letter, we propose a simple yet effective unsupervised change detection approach for multitemporal synthetic aperture radar images from the perspective of clustering. This approach jointly exploits the robust Gabor wavelet representation and the advanced cascade clustering. First, a log-ratio image is generated from the multitemporal images. Then, to integrate contextual information in the feature extraction process, Gabor wavelets are employed to yield the representation of the log-ratio image at multiple scales and orientations, whose maximum magnitude over all orientations in each scale is concatenated to form the Gabor feature vector. Next, a cascade clustering algorithm is designed in this discriminative feature space by successively combining the first-level fuzzy c-means clustering with the second-level nearest neighbor rule. Finally, the two-level combination of the changed and unchanged results generates the final change map. Experimental results are presented to demonstrate the effectiveness of the proposed approach.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2015.2484220</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cascades ; Clustering ; Clustering algorithms ; Feature extraction ; Fuzzy c-means (FCM) ; Gabor wavelets ; Image detection ; multitemporal synthetic aperture radar (SAR) images ; Orientation ; Remote sensing ; Representations ; Synthetic aperture radar ; Transforms ; two-level clustering ; unsupervised change detection ; Wavelet</subject><ispartof>IEEE geoscience and remote sensing letters, 2015-12, Vol.12 (12), p.2458-2462</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-d5603a95de3ad4266a92aa8fc0bf58a90d30837e129d5be3f365fc583925ccd93</citedby><cites>FETCH-LOGICAL-c444t-d5603a95de3ad4266a92aa8fc0bf58a90d30837e129d5be3f365fc583925ccd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7300392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7300392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heng-Chao Li</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><creatorcontrib>Longbotham, Nathan</creatorcontrib><creatorcontrib>Emery, William J.</creatorcontrib><title>Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, we propose a simple yet effective unsupervised change detection approach for multitemporal synthetic aperture radar images from the perspective of clustering. This approach jointly exploits the robust Gabor wavelet representation and the advanced cascade clustering. First, a log-ratio image is generated from the multitemporal images. Then, to integrate contextual information in the feature extraction process, Gabor wavelets are employed to yield the representation of the log-ratio image at multiple scales and orientations, whose maximum magnitude over all orientations in each scale is concatenated to form the Gabor feature vector. Next, a cascade clustering algorithm is designed in this discriminative feature space by successively combining the first-level fuzzy c-means clustering with the second-level nearest neighbor rule. Finally, the two-level combination of the changed and unchanged results generates the final change map. Experimental results are presented to demonstrate the effectiveness of the proposed approach.</description><subject>Cascades</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Feature extraction</subject><subject>Fuzzy c-means (FCM)</subject><subject>Gabor wavelets</subject><subject>Image detection</subject><subject>multitemporal synthetic aperture radar (SAR) images</subject><subject>Orientation</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Synthetic aperture radar</subject><subject>Transforms</subject><subject>two-level clustering</subject><subject>unsupervised change detection</subject><subject>Wavelet</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhoMoWKs_QLwsePGSup_J7lGjrYWI0A_wFrbJpKYm2bibVPz3JrR48DQz8LzDy-N51wRPCMHqPp4tlhOKiZhQLjml-MQbESGkj0VIToedC18o-X7uXTi3w7jHZDjyPmd6Yyyagm47C-hRO8jQunZdA3ZfDEf0oestoCdoIW0LUyOTo9eubIsWqsZYXaLlwwLNK70Fd8z30Orb-DHsoURR2bkWbFFvL72zXJcOro5z7K2nz6voxY_fZvPoIfZTznnrZyLATCuRAdMZp0GgFdVa5ine5EJqhTOGJQuBUJWJDbCcBSJPhWSKijTNFBt7d4e_jTVfHbg2qQqXQlnqGkznEhIqRiXmSvbo7T90Zzpb9-16iklJOQlFT5EDlVrjnIU8aWxRafuTEJwM-pNBfzLoT476-8zNIVMAwB8fMoz7nuwXWjyAvQ</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Heng-Chao Li</creator><creator>Celik, Turgay</creator><creator>Longbotham, Nathan</creator><creator>Emery, William J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20151201</creationdate><title>Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering</title><author>Heng-Chao Li ; Celik, Turgay ; Longbotham, Nathan ; Emery, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-d5603a95de3ad4266a92aa8fc0bf58a90d30837e129d5be3f365fc583925ccd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cascades</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Feature extraction</topic><topic>Fuzzy c-means (FCM)</topic><topic>Gabor wavelets</topic><topic>Image detection</topic><topic>multitemporal synthetic aperture radar (SAR) images</topic><topic>Orientation</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Synthetic aperture radar</topic><topic>Transforms</topic><topic>two-level clustering</topic><topic>unsupervised change detection</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heng-Chao Li</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><creatorcontrib>Longbotham, Nathan</creatorcontrib><creatorcontrib>Emery, William J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heng-Chao Li</au><au>Celik, Turgay</au><au>Longbotham, Nathan</au><au>Emery, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>12</volume><issue>12</issue><spage>2458</spage><epage>2462</epage><pages>2458-2462</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, we propose a simple yet effective unsupervised change detection approach for multitemporal synthetic aperture radar images from the perspective of clustering. This approach jointly exploits the robust Gabor wavelet representation and the advanced cascade clustering. First, a log-ratio image is generated from the multitemporal images. Then, to integrate contextual information in the feature extraction process, Gabor wavelets are employed to yield the representation of the log-ratio image at multiple scales and orientations, whose maximum magnitude over all orientations in each scale is concatenated to form the Gabor feature vector. Next, a cascade clustering algorithm is designed in this discriminative feature space by successively combining the first-level fuzzy c-means clustering with the second-level nearest neighbor rule. Finally, the two-level combination of the changed and unchanged results generates the final change map. Experimental results are presented to demonstrate the effectiveness of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2015.2484220</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2015-12, Vol.12 (12), p.2458-2462
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_miscellaneous_1793280498
source IEEE Electronic Library (IEL)
subjects Cascades
Clustering
Clustering algorithms
Feature extraction
Fuzzy c-means (FCM)
Gabor wavelets
Image detection
multitemporal synthetic aperture radar (SAR) images
Orientation
Remote sensing
Representations
Synthetic aperture radar
Transforms
two-level clustering
unsupervised change detection
Wavelet
title Gabor Feature Based Unsupervised Change Detection of Multitemporal SAR Images Based on Two-Level Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gabor%20Feature%20Based%20Unsupervised%20Change%20Detection%20of%20Multitemporal%20SAR%20Images%20Based%20on%20Two-Level%20Clustering&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Heng-Chao%20Li&rft.date=2015-12-01&rft.volume=12&rft.issue=12&rft.spage=2458&rft.epage=2462&rft.pages=2458-2462&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2015.2484220&rft_dat=%3Cproquest_RIE%3E1793280498%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738824175&rft_id=info:pmid/&rft_ieee_id=7300392&rfr_iscdi=true