Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge

We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-10, Vol.115 (18), p.186601-186601, Article 186601
Hauptverfasser: Li, Xiaopeng, Ganeshan, Sriram, Pixley, J H, Das Sarma, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186601
container_issue 18
container_start_page 186601
container_title Physical review letters
container_volume 115
creator Li, Xiaopeng
Ganeshan, Sriram
Pixley, J H
Das Sarma, S
description We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.
doi_str_mv 10.1103/PhysRevLett.115.186601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793276945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793276945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a76042fd8980b3aa8fc393cfedd6b5508ffe23067d4e5ff3e60e4c7d9e7f1e223</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq0KVBbav7DKkUuWcfyZY0HQIi2Uj_aceu3x4iobQ-xQhV9P0G6rHjmNZt7nnZHmJWROYUEpsJObhzHd4fMSc54GYkG1lEA_kBkFVZeKUr5HZgCMljWAOiCHKf0GAFpJ_ZEcVFJIwTWbkV9XphvL0-jGYhmtacOLySF2helccTuYLg-b4jp22K-jCzbksQiTWFxFh23xJ-SHqbkP3brF8sb0OdgWJ3EV2jf03K3xE9n3pk34eVePyM-L8x9n38rl96-XZ1-WpWWc59IoCbzyTtcaVswY7S2rmfXonFwJAdp7rBhI5TgK7xlKQG6Vq1F5ilXFjsjxdu9jH58GTLnZhGSxbU2HcUgNVTWrlKy5eAfKGNVaaD6hcovaPqbUo28e-7Ax_dhQaN6CaP4LYhqIZhvEZJzvbgyrDbp_tr-fZ68xdoep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1733188584</pqid></control><display><type>article</type><title>Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge</title><source>American Physical Society Journals</source><creator>Li, Xiaopeng ; Ganeshan, Sriram ; Pixley, J H ; Das Sarma, S</creator><creatorcontrib>Li, Xiaopeng ; Ganeshan, Sriram ; Pixley, J H ; Das Sarma, S</creatorcontrib><description>We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.115.186601</identifier><identifier>PMID: 26565483</identifier><language>eng</language><publisher>United States</publisher><subject>Energy use ; Entanglement ; Entropy ; Legal issues ; Localization ; Mathematical models ; Optical lattices ; Position (location)</subject><ispartof>Physical review letters, 2015-10, Vol.115 (18), p.186601-186601, Article 186601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a76042fd8980b3aa8fc393cfedd6b5508ffe23067d4e5ff3e60e4c7d9e7f1e223</citedby><cites>FETCH-LOGICAL-c344t-a76042fd8980b3aa8fc393cfedd6b5508ffe23067d4e5ff3e60e4c7d9e7f1e223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26565483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Ganeshan, Sriram</creatorcontrib><creatorcontrib>Pixley, J H</creatorcontrib><creatorcontrib>Das Sarma, S</creatorcontrib><title>Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.</description><subject>Energy use</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Legal issues</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Optical lattices</subject><subject>Position (location)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P3DAQhq0KVBbav7DKkUuWcfyZY0HQIi2Uj_aceu3x4iobQ-xQhV9P0G6rHjmNZt7nnZHmJWROYUEpsJObhzHd4fMSc54GYkG1lEA_kBkFVZeKUr5HZgCMljWAOiCHKf0GAFpJ_ZEcVFJIwTWbkV9XphvL0-jGYhmtacOLySF2helccTuYLg-b4jp22K-jCzbksQiTWFxFh23xJ-SHqbkP3brF8sb0OdgWJ3EV2jf03K3xE9n3pk34eVePyM-L8x9n38rl96-XZ1-WpWWc59IoCbzyTtcaVswY7S2rmfXonFwJAdp7rBhI5TgK7xlKQG6Vq1F5ilXFjsjxdu9jH58GTLnZhGSxbU2HcUgNVTWrlKy5eAfKGNVaaD6hcovaPqbUo28e-7Ax_dhQaN6CaP4LYhqIZhvEZJzvbgyrDbp_tr-fZ68xdoep</recordid><startdate>20151030</startdate><enddate>20151030</enddate><creator>Li, Xiaopeng</creator><creator>Ganeshan, Sriram</creator><creator>Pixley, J H</creator><creator>Das Sarma, S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151030</creationdate><title>Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge</title><author>Li, Xiaopeng ; Ganeshan, Sriram ; Pixley, J H ; Das Sarma, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a76042fd8980b3aa8fc393cfedd6b5508ffe23067d4e5ff3e60e4c7d9e7f1e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Energy use</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Legal issues</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Optical lattices</topic><topic>Position (location)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaopeng</creatorcontrib><creatorcontrib>Ganeshan, Sriram</creatorcontrib><creatorcontrib>Pixley, J H</creatorcontrib><creatorcontrib>Das Sarma, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaopeng</au><au>Ganeshan, Sriram</au><au>Pixley, J H</au><au>Das Sarma, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-10-30</date><risdate>2015</risdate><volume>115</volume><issue>18</issue><spage>186601</spage><epage>186601</epage><pages>186601-186601</pages><artnum>186601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We investigate many-body localization in the presence of a single-particle mobility edge. By considering an interacting deterministic model with an incommensurate potential in one dimension we find that the single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability (or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the transition separating area and volume law scaling of the EE does not coincide with the nonthermal to thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We also establish that the model possesses an infinite temperature many-body localization transition despite the existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic optical lattice experiments which can directly probe the effects of the mobility edge.</abstract><cop>United States</cop><pmid>26565483</pmid><doi>10.1103/PhysRevLett.115.186601</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-10, Vol.115 (18), p.186601-186601, Article 186601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1793276945
source American Physical Society Journals
subjects Energy use
Entanglement
Entropy
Legal issues
Localization
Mathematical models
Optical lattices
Position (location)
title Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Many-Body%20Localization%20and%20Quantum%20Nonergodicity%20in%20a%20Model%20with%20a%20Single-Particle%20Mobility%20Edge&rft.jtitle=Physical%20review%20letters&rft.au=Li,%20Xiaopeng&rft.date=2015-10-30&rft.volume=115&rft.issue=18&rft.spage=186601&rft.epage=186601&rft.pages=186601-186601&rft.artnum=186601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.115.186601&rft_dat=%3Cproquest_cross%3E1793276945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1733188584&rft_id=info:pmid/26565483&rfr_iscdi=true